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Abstract 

Aim: To validate novel software to calculate vessel Fractional Flow Reserve (vFFR) 

based on 3D-QCA and to assess inter-observer variability in patients who underwent 

routine pre procedural FFR assessment for intermediate coronary artery stenosis.  

Methods and results: In-vitro validation was performed in an experimental model. 

Clinical validation was performed in an observational, retrospective, single-center 

cohort study. A total of 100 patients presenting with stable angina or non-ST segment 

elevation myocardial infarction and an indication to perform FFR between Jan 2016 

and Oct 2016 were included. vFFR was calculated based on the aortic root pressure 

along with two angiographic projections and validated against pressure wire-derived 

FFR. 

Mean FFR and vFFR were 0.82±0.08 and 0.84±0.07 respectively. A good linear 

correlation was found between FFR and vFFR (r=0.89; p<0.001). Assessment of 

vFFR had a low inter-observer variability (r=0.95; p<0.001). The diagnostic accuracy 

of vFFR in identifying lesions with an FFR≤0.80 was higher as compared with 3D-

QCA: AUC 0.93 (95% CI: 0.88-0.97) vs. 0.66 (95% CI: 0.55-0.77) respectively. 

Conclusions: The 3D-QCA derived vFFR has a high linear correlation to invasively 

measured FFR, a high diagnostic accuracy to detect FFR ≤ 0.80 and a low inter-

observer variability. 

 

Keywords: Stable Angina, Fractional Flow Reserve, QCA, Other technique 
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Condensed Abstract: 

The Fast-study is an observational, retrospective, single-center study which 

validated novel three dimensional Quantitative Coronary Angiography based software 

to calculate vessel-Fractional Flow Reserve (vFFR), without using a pressure wire or 

a vasodilator agent. A good linear correlation was found between FFR and vFFR 

(r=0.89; p<0.001). Assessment of vFFR had a low inter-observer variability (r=0.95; 

p<0.001). vFFR had good accuracy in identifying lesions with an FFR≤0.80 (AUC 0.93; 

95% CI [0.88 - 0.97]). In conclusion, 3D-QCA-based vFFR has a high linear correlation 

to wired-based FFR, a high diagnostic accuracy to detect FFR ≤0.80 along with a low 

inter-observer variability. 
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Abbreviations:  

AUC   = Area under the curve 

ACS   = Acute coronary syndrome 

CAD   = Coronary artery disease 

CFD   = Computational fluid dynamics 

CVD   = Cardiovascular disease 

dPR   = Diastolic pressure ratio 

DS   = Diameter stenosis 

FFR   = Fractional flow reserve 

iFR   = instantaneous wave-free ratio 

MLD   = Minimum lumen diameter 

NHPR  = Non-hyperemic pressure ratio 

NSTEMI  = Non ST-elevation myocardial infarction 

QCA   = Quantitative coronary angiography 

QFR   = Quantitative flow ratio 

RFR   = Resting Full-cycle Ratio 

ROC   = Receiver-operating characteristic 

vFFR   = Vessel fractional flow reserve 

  



Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published 
immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the 
journal 

Introduction 

Invasive coronary angiography has served as the cornerstone for the 

diagnosis of patients with known or suspected coronary artery disease (CAD). 

Unfortunately, the technique is limited in its ability to assess the hemodynamic impact 

of intermediate coronary artery stenosis resulting in under- or overestimation of 

disease severity 1. In order to overcome this limitation, Fractional Flow Reserve 

(FFR) has emerged as the mainstay of functional hemodynamic lesion assessment 

and is presently regarded as the gold standard for identifying stenoses that cause 

myocardial ischemia 2-5. Despite indisputable evidence supporting the benefit of FFR 

to guide clinical decision making, adoption into daily practice has been limited. FFR 

assessment requires the use of a (costly) pressure wire or microcatheter along with 

the administration of a hyperemic agent associated with temporary patient discomfort 

6. Although non-hyperemic pressure ratios (NHPR) such as instantaneous wave-free 

ratio (iFR), resting full-cycle ratio (RFR) and diastolic pressure ratio (dPR) have 

emerged as adenosine-free faster and easier methods to achieve physiologic 

assessment, the need for a costly pressure wire remains a fact 7-9.  

The Fast Assessment of STenosis severity (FAST) study aimed to validate a 

new 3D-QCA-based software to calculate vessel-FFR (vFFR) using phantom models. 

In addition we correlated this index with pressure wire derived FFR in a consecutive 

series of patients and studied inter-observer variability.  
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Methods 

In vitro experimental model 

An in vitro experimental model was developed for technical validation of the 

calculation method performed by the CAAS workstation in phantoms. The 

experimental set-up consists of a chamber, a water-driven systemic and coronary 

circulation 10.  The chamber mimics the left ventricle and artificial valves mimic the 

mitral- and aortic valve of the heart (Figure 1). The piston is powered by a computer-

controlled linear motor (ETB32, Parker) creating pulsatile flow at 75 beats per minute. 

For non-pulsatile flow, a constant flow pump (2035, Verder) fills a higher placed 

reservoir, with overflow function, the output of the reservoir connects to the mitral 

valve. A polyurethane tube models the aorta, and input impedance characterizes the 

systemic circulation behaviour. Flow through the aorta was set at approximately 5 

l/min and measured using an ultrasound flow probe (Transonic 28PAU, with TS 410 

flowmeter). The distal systemic compliance is modelled using a Windkessel, resulting 

in physiological pressure conditions.  

 

Coronary circulation 

The in vitro coronary circulation comprised a tube (8mm diameter) connected 

to the ostium of the aorta with a phantom attached at the end of this tube. The 

phantom consisted of an 8mm tube with a 75% sinusoidal diameter stenosis (Model: 

QA-STV, Simutec). A resistance was placed at the outflow tract of the phantom to 

control the amount of flow through the phantom. The diameter of the tubes in the 

phantom are relatively large compared to human coronary artery dimensions. 11 To 

simulate significant pressure drop along the lesion, the average flow through the 

phantom was set higher as compared to physiological coronary flow, and was set to 
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an average of 100, 200, 300 and 400 ml/min for both pulsatile flow and constant 

flow12 with Reynolds numbers of 1061, 2122, 3183 and 4244 for the stenotic 

segments and 265, 531, 796 and 1061 for healthy segments respectively. The 

proximal and distal pressures to the lesion were measured simultaneously with two 

pressure wires (Certus12006, Radi). The flow rate through the phantom was 

registered by an electromagnetic flow probe. The pressure drop was based on the 

difference between the measured pressures distal and proximal to the lesion. 

Measurements were averaged over four cycles during pulsatile flow, and the same 

period was used for averaging during constant flow.   

 

Pressure drop computation methods 

The pressure drop over the phantom lesions was computed using two different 

approaches: 1) Computational Fluid Dynamics (CFD) being considered a reference 

standard in blood flow simulations 13 and 2) by using CAAS Workstation 8.0 (Pie 

Medical Imaging, Maastricht, the Netherlands). A 3D surface mesh, corresponding to 

the geometry between the locations of the two pressure wires, was used for 

calculating the pressure drop by both approaches. Viscosity differences of water 

against blood were taken into consideration. The CFD approach uses a tetrahedron 

mesh with a mesh resolution adapted to specific vessel geometry and wall 

irregularities resulting in tetrahedron edge lengths varying between 0.05 and 0.8mm. 

Furthermore, three boundary layers were introduced to capture the blood flow close 

to the wall. Thickness of the boundary layers was calculated based on flow, viscosity, 

density and Reynolds number. Using the mesh, the CFD approach modeled flow 

using Navier-Stokes equations (Kratos, Multi-Physics 5, version 20). The following 

boundary conditions were applied: a constant parabolic flow profile at the inlet and a 
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stress free outlet (zero pressure). 14 Further, rigid-wall, non-slip conditions, and a 

Newtonian fluid approximation were used. 

The CAAS Workstation 8.0 used for the experimental model was adapted to 

allow importing a 3D geometry of the phantom. A single flow as applied (fixed flow 

value over time) to both computational approaches, to eliminate time-variation in flow 

profile and pressure drop. In total four experiments with different flow values were 

performed. The experiment learned that the average pressure drop using pulsatile 

flow cycle provides similar results as when using constant flow (that equals the 

average of the pulsatile flow cycle). This observation justified the application of a 

single flow value for the computation approaches. The pressure drop obtained by 

both pulsatile and constant flow for the different flow values were compared to the 

computed pressure drop values of both the CFD approach and CAAS Workstation 

vFFR (Figure 2). 

 

Clinical validation study 

Study design and patient population  

The FAST (Fast Assessment of STenosis severity) study is an observational, 

retrospective, single-center cohort study in which offline computation of vFFR as 

compared with conventional invasive FFR (St. Jude Aeris, Abbott Vasuclar, St Paul, 

MA, USA) was studied. From January 2016 through October 2016, patients ≥18 

years of age presenting with stable coronary artery disease or non-ST elevation 

acute coronary syndrome who underwent pre-PCI FFR assessment were eligible. 

Angiographic inclusion criteria were: at least one intermediate stenosis in one of the 

epicardial coronary arteries (diameter stenosis of 30-70% by visual assessment). 

Exclusion criteria were FFR measurements with damped pressure curves, patients 
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with ST-elevation myocardial infarction (STEMI) or lesions containing thrombus, left 

main lesions, grafts, arteries with collaterals, cardiogenic shock or severe 

hemodynamic instability and adenosine intolerance.  

 

Procedure protocol 

Procedures were performed according to standard local clinical practice. 

Angiographic lesion severity was assessed by two monoplane angiographic 

projections (at least 30 degrees apart, preferably orthogonal) after a bolus of 200mcg 

nitroglycine. Hyperemia during FFR measurement was achieved by continuous 

infusion of adenosine at a rate of 140 μg/kg/min through an antecubital vein for at 

least 2 minutes. Angiograms and pressure waveforms were stored as DICOM images 

for offline analyses. Aortic root pressure was constantly recorded. The last blood 

pressure measurement taken before the start of the FFR measurement was used as 

input in the CAAS/vFFR software.  

 

Patient selection, 3D- coronary reconstruction and computation of vFFR 

Figure 3 represents a flowchart showing all included and excluded patients. 

Computation of vFFR was performed offline and assessed blinded by 2 independent 

observers to assess inter-observer variability (KM, MB). A total of 3 two-dimensional 

images, were exported to the CAAS workstation 8.0 (Pie Medical Imaging, 

Maastricht, the Netherlands): two views with at least 30 degrees differences in 

rotation/angulation to create a 3D reconstruction of the coronary artery and one view 

to ascertain the position of the FFR pressurewire. Angiograms were recorded 

visualizing the entire vessel, taking into account overlapping and foreshortening to 

create a 3D reconstruction of the coronary artery as accurate as possible. The two 
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independent observers used the same cine-images for the calculation of vFFR. 

Although temporal alignment of the cardiac cycle between the two angiograms was 

performed automatically by ECG triggering, manual frame selection was allowed. 

Contour detecting was performed semi-automatically, delineating the vessel contour 

from the ostium to the position at which the pressure wire sensor was positioned 

(3cm from the tip). As such both final frame selection and contour corrections were 

left to the discretion of the observer. The percent diameter stenosis, minimal lumen 

diameter, reference lumen diameter, minimal lumen area and lesion length were 

measured from the same 3D model as on which the vFFR was determined. The 

lesion segment was defined as proximal, mid or distal. vFFR was calculated 

automatically incorporating the invasively measured aortic root pressure and 

automatically generated 3D QCA values and vFFR along entire vessel 

instantaneously (Figure 4).  

 

Within CAAS Workstation vFFR the pressure drop is calculated 

instantaneously by applying physical laws including viscous resistance and 

separation loss effects present in coronary flow behavior, as described by Gould and 

Kirkeeide. 15, 16. The methods however are based on a single angiographic projection. 

Within CAAS vFFR, the geometry of the coronary artery is derived from well-

validated 3D reconstructions 17, 18 which reduces the effects of foreshortening, out of 

plane magnification and non-symmetric coronary lesions. Furthermore, the pressure 

drop calculation by CAAS vFFR includes patient specific aortic pressure, as 

measured during the catheterization procedure. Maximum hyperemic blood flow was 

empirically determined from clinical data and we assumed that proximal coronary 
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velocity is preserved along the coronary of interest which is adapted based on the 

patient specific aortic rest pressure and the 3D geometry of the coronary artery. 

 

Statistical analysis 

Continuous variables are presented as mean ±standard deviation. All 

continuous variables were normally distributed. Categorical variables are expressed 

as counts and percentages. All statistical tests are 2-tailed. Pearson’s correlation 

coefficient (r) was used to assess the relationship between FFR and vFFR and to 

assess inter-observer variability. Agreement between the indices and the inter-

observer reliability were assessed by Bland-Altman plots with corresponding 95% 

limits of agreement. Receiver-operating characteristic (ROC) area under the curve 

(AUC) analysis was used to estimate the diagnostic performance of vFFR as 

compared to the wire-based FFR threshold of ≤0.80. Statistical analysis was carried 

out using the SPSS statistical package version 24 (IBM, Armonk, North Castle, New 

York, USA).  
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Results 

Pre-clinical data 

Pulsatile flow based pressure measurements corresponded well with pressure 

drops obtained by constant flow (0.36±0.37 mmHg, r>0.99; p=0.002), (Figure 2). 

This supported the assumption to apply a single flow value for the computational 

approaches. The CFD pressure drop results showed excellent agreement with the 

experimental pulsatile and constant flow (-0.36±0.28 mmHg and 0.01±0.38 mmHg 

respectively, r>0.99; p<0.002), as well as the CAAS Workstation vFFR pressure drop 

results (0.52 ±0.28 mmHg and -0.16±0.11 mmHg respectively, r>0.99; p<0.002). The 

difference between CFD and vFFR was -0.17±0.34 mmHg with excellent agreement 

(r>0.99; p<0.002).  

 

Clinical data 

Patient demographics and procedural data 

One hundred patients were included. Mean age was 64±11 years, 67% were 

male and 26% had diabetes. The majority of the FFR measurements were performed 

in the left anterior descending artery (60%). The circumflex and right coronary artery 

were involved in 13% and 27% of the cases respectively. Mean angiographic percent 

diameter stenosis (DS), lesion length and minimum lumen diameter (MLD), 

measured from 3D-QCA, were 37±13%, 20±13 mm and 1.7±0.3 mm respectively 

(Table 1).  

 

Correlation and agreement between FFR and vFFR 

Mean FFR and vFFR were 0.82±0.08 and 0.84±0.07 respectively. A good 

linear correlation was found between FFR and vFFR (r=0.89; p<001). Sensitivity 
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analysis of patients presenting with ACS vs. stable patients showed no differences in 

correlation between FFR and vFFR (r=0.89 vs 0.89 respectively). Assessment of 

vFFR had a low inter-observer variability (r=0.95; p<0.001) (Figure 5). vFFR had a 

good accuracy in the identification of patients with significant FFR values ≤0.80 (AUC 

of 0.93 [95% CI: 0.88–0.97]) (Figure 6). The diagnostic accuracy of 3D-QCA, based 

on percentage diameter stenosis was lower as compared to the diagnostics accuracy 

of vFFR (AUC of 0.66 [95% CI: 0.55–0.77]).  
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Discussion 

The FAST study confirmed the feasibility of novel 3D-QCA based software to 

calculate FFR without the use of a pressure wire or microcatheter. In the pre-clinical 

technical validation model vFFR proved to have a strong correlation with CFD and 

measured flow parameters. In our clinical validation study we confirmed a good 

agreement and high diagnostic accuracy of vFFR as compared to invasively 

measured FFR. Finally, we showed that vFFR had a low inter-observer variability. 

In the past decade a wealth of data has become available demonstrating the 

superiority of FFR guided PCI as compared to angiography guided PCI 4, 5, 19. FFR 

subsequently received strong recommendations in current revascularization 

guidelines 3, 20. Even though the use of FFR proved to be contrast saving, cost 

effective and associated with improved quality of life, FFR is still not being performed 

in the vast majority of cases 3, 5, 19, 20. The latter has been hypothesized to be due to 

the need for (in some countries) expensive hyperemic agents with known adverse 

events as dyspnea and arrhythmias and or intolerance due to pulmonary disease and 

the use of a costly pressure wire 6. More recently, the advent of adenosine-free non 

hyperemic pressure ratios proved to be a valuable alternative to FFR. The need for a 

dedicated pressure however still remains a fact. For these reasons, the search for 

cheaper, faster and more patient-friendly methods to assess coronary physiology 

remains imperative. 

One of the first studies assessing the potential of angiography based functional 

lesion assessment was published by Papafaklis et al. in which the CAAS 3D-QCA 

was used to calculate a virtual Functional Assessment Index (vFAI) 21 by following the 

concepts as introduced by Gould et al., reporting that pressure drop was linked to 

flow using linear and quadratic terms (DP=fvQ + fsQ2) 22. In order to compute the 
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vFAI the authors first solved the fv and fs parameters from the artery-specific 

quadratic equation by performing two separate CFD simulations using the geometry 

resulting based on 3D-QCA. In both CFD simulations, the arterial wall was 

considered to be rigid and no-slip conditions were applied at the vessel wall, while a 

reference pressure of 100 mmHg was imposed as boundary condition at the inlet and 

steady flow (fully developed laminar, and incompressible blood flow) was imposed at 

the outlet. One CFD simulation was performed with a steady flow of 1 ml/sec 

(corresponding to the average flow at rest) and one CFD simulation was performed 

with a steady flow of 3 ml/sec (corresponding to the average flow during hyperemia). 

After solving fv and fs parameters, the vFAI was computed as the ratio of the area 

under the curve (Pd/Pa=1−ƒv Q/Pa−ƒs Q2/Pa) for a flow range from 0 to 4ml/sec. The 

vFAI estimates the overall behavior of the artery/stenosis-specific Pd/Pa versus flow 

relationship and is not identical to FFR. This approach bypasses the need to derive a 

patient specific blood flow within the coronary of interest. CAAS vFFR calculates the 

true pressure drop using patient specific aortic pressure and estimates a single 

patient specific coronary blood flow used for each pressure drop calculation. 

 Several recent studies assessed the potential value of 3D-QCA based FFR 23-

25. In the VIRTU-1 study 24, Morris et al. developed a computer model that accurately 

predicted virtual FFR from angiographic images alone assuming 3D reconstruction, 

using a Philips  workstation. A good correlation (r=0.84) of virtual FFR was found with 

invasive FFR. The technology however used lengthy CFD analysis hampering direct 

clinical applicability.  

More recent studies validated easier methods using contrast flow models to 

calculate 3D-QCA-based FFR by using frame counting 25, 26. The FAVOR Pilot 

Studyassessed the diagnostic accuracy of quantitative flow ratio (QFR) as measured 
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offline in three different ways, based on the different mean hyperemic flow velocities 

26. The authors observed a good agreement with FFR  and a high diagnostic 

accuracy for identifying a positive FFR (FFR<0.80). Comparable results were 

recently found in the FAVOR II China Study in which online QFR has a high feasibility 

and accuracy in identifying hemodynamically significant coronary artery stenosis 25. 

In both studies, QFR was performed using a prototype software package (QAngio XA 

3D prototype, Medis Medical Imaging System, Leiden, the Netherlands). The contrast 

flow models by QAngio however have several limitations. 

Coronary flow velocity is a highly sensitive variable which is influenced by 

clinical and haemodynamic parameters such as heartrate, bloodpressure, left 

ventricular end diastolic pressure, left and/or right ventricular hypertrophy and 

systemic diseases as diabetes mellitus, large vessel disease etc. 27, 28 It is well 

known, that coronary perfusion occurs mainly during diastole. This implies that 

coronary velocity is not constant during the entire cardiac cycle and therefore 

passage of contrast agent might be different in systole and diastole. In addition, there 

are phasic changes in resistance. The perfusion of the left coronary artery (LCA) is 

predominantly diastolic while the perfusion of right coronary artery (RCA) is both 

systolic and diastolic, due to lower pressure in the right ventricle as compared with 

the left ventricle. Therefore, one could assume differences while using frame count 

methods to obtain pressure gradients in the left vs. the right coronary artery. 

Unfortunately, no inter-observer or inter-study variability was reported in both FAVOR 

studies. In contrast, in the present study, we demonstrated an excellent inter-

observer variability (r=0.95; p<0.001).  

The mean QCA-based diameter stenosis in the FAVOR II China study was 

46.5% and about 34% of the measured lesions had an FFR ≤0.80. A discrepancy 
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could be appreciated between the relatively low mean QCA based diameter stenosis 

(37%) and the percentage of vFFR values ≤0.80. Part of the discrepancy can be 

explained by the fact that the presented QCA figures and percentages diameter 

stenoses were based on 3D assessment which is per definition lower than the 

conventional 2D percentages 29. Additionally, there have been several reports about 

the discordance between anatomical and functional assessment of coronary lesions 

is far from rare.  30-32 

Despite the relatively low % diameter stenosis in the present study, 42% of  the 

patients had an FFR ≤0.80 which was comparable to the results of the FFRangio 

Accuracy versus Standard FFR (FAST-FFR) study (43% of FFR values were ≤0.80) 

23. The FAST-FFR study was a prospective, multicenter, international trial 

demonstrating that FFRangio  (CathWorks, Kfar-Saba, Israel) had a high sensitivity, 

specificity and accuracy in providing functional angiographical mapping of the entire 

coronary tree as compared with the pressure wire based FFR. 

The FAST study is the first validation study of CAAS vFFR with a limited 

sample size and offline assessment of vFFR. Clinical outcome studies should be 

obtained to assess the value of vFFR measured by CAAS Workstation for the 

hemodynamic assessment of lesion severity into daily clinical practice.  

 

Limitations 

Our study has several limitations. First, it is a single center experience in which 

we restricted our analyses to those recordings with undamped pressure wave forms. 

Previous work showed the high prevalence of suboptimal FFR curves in clinical 

practice (up to 30%) suggesting an additional benefit when using techniques based 

on angiography and simplified flow models.33 Second, the software’s accuracy in 
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complex vessels, e.g. bifurcations and diffusely diseased vessels, remains to be 

determined in larger patient cohorts. Furthermore, as mentioned in the methods 

section, contour detection was performed semi-automatically. Finally, although vFFR 

calculation was performed by two independent observers, there was no independent 

core-lab involved. Independent corelab adjudication of vFFR will be performed in the 

ongoing international multicenter FAST II study. 

 

Conclusion 

vFFR based on 3D-QCA as determined using novel software has a high linear 

correlation to invasively measured FFR, a high diagnostic accuracy to detect FFR ≤ 

0.80 along with a low inter-observer variability. 

 

Impact on daily practice 

There is a clear need to simplify the use of coronary physiology in order to increase 

its uptake in daily clinical practice. Once vFFR technology becomes more widely 

available, it might fundamentally change the way both diagnostic coronary 

angiography and PCI are being performed. 
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Figure Legends:  

Figure 1.  Schematic of the in vitro experimental model. The LV-chamber pumps 

water through the aorta flow prove (qao) and the artificial valve into the aorta and 

from the aorta into the systemic Windkesssel components (Rao, L, C and Rp). A tube, 

representing the coronary artery, branches off the aorta, passes the phantom, the 

coronary flow probe (qc) towards a venous outlet (V). The pressure sensors are 

positioned proximal (Pprox.) and distal (Pdist.) to the lesion in the phantom, the flow (qc) 

is measured at the outflow tract of the phantom. The flow through the phantom is 

controlled by the resistance (Rc) in the outflow tract. 

Figure 2. Pressure drop resulting from pressure measurements during pulsatile flow 

(red line) and constant flow (green line) as well as the computed pressure drop by the 

Computational Fluid Dynamics (CFD) (light blue) and CAAS Workstation vFFR (dark 

blue). 

Figure 3. Flowchart of all included and excluded patients. 
 

Figure 4. Three-dimensional reconstruction of coronary artery and computation of 

vessel-FFR, using 2 angiographic projections with at least 30 degrees apart and 

invasively measured aortic root pressure. 

Figure 5. Scatter Plots showing the relationship between vFFR  vs. wire-based FFR 

(A) and  inter-observer variability (B) and Bland- Altman plots of differences against 

the means. The mean bias is represented by the solid red line and the 95% 

confidence interval is represented by the dashed lines. 

Figure 6. ROC Curves for vFFR and 3D-QCA. Comparison is made with a wire-

based FFR at a cut point of 0.80.  
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Table 1. Baseline characteristics. 

 

 

Total 

N = 100 

Age, y, mean±SD 64±11 

Male gender, n (%) 67 (67) 

Cardiovascular risk factors,  n (%)  

Hypertension 70 (70) 

Hyperlipidemia 59 (59) 

Diabetes Mellitus 26 (26) 

Current smoker 25 (25) 

Peripheral artery disease 10 (10) 

Medical history and co-morbidity, mean±SD  

eGFR, ml/min 88±30 

Hemoglobine, (mmol/L) 8.2±1.4 

BMI  28±5 

Lesions location and characteristics, n (%)  

Left anterior descending artery 60 (60) 

Left circumflex artery 13 (13) 

Right coronary artery  27 (27) 

Tortuous vessels 28 (28) 

Tandem lesions 7 (7) 

Moderate or severe calcification 36 (36) 

Bifurcation lesions 21 (21) 

Ostial lesions 2 (2) 
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Diffuse disease 31 (31) 

Coronary angiography indication, n (%)  

Stable coronary artery disease 60 (60) 

Unstable coronary artery disease 14 (14) 

NSTEMI 26 (26) 

3D- Quantitative Coronary Angiography, mean±SD  

Lesion length, mm 20±13 

Minimal lumen diameter, mm 1.7±0.33 

Minimal lumen area, mm2 2.3±0.96 

Diameter stenosis, % 37±13 

Reference vessel diameter, mm 2.8±0.5 

Indices, mean±SD  

FFR 0.82±0.08 

vFFR  0.84±0.07 

 

Values are n, mean±SD of  n (%); BMI= Body Mass Index; eGFR= estimated 

glomerular filtration rate; FFR=  Fractional Flow Reserve; NSTEMI= Non-ST-segment 

elevation myocardial infarction; vFFR= vessel Fractional Flow Reserve.  
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