

<u>Title:</u> Comparative Effectiveness Analysis of Percutaneous Coronary Intervention vs. Coronary Artery Bypass Grafting in Patients with Chronic Kidney Disease and Unprotected Left Main Coronary Artery Disease : Insights From a Large-Sized All-**Comers Registry.**

Authors: Dae-Won Kim, M.D, PhD; Sang Yong Om, M.D; Mahn-Won Park, M.D, PhD; Ha Wook Park, M.D; Pil Hyung Lee, M.D, PhD; Do-Yoon Kang, M.D; Jung-Min Ahn, M.D, PhD; Cheol-Whan Lee, M.D, PhD; Seong-Wook Park, M.D, PhD; Seung-Jung Park, M.D, PhD; Sung-Ho Her, M.D, PhD; Duk-Woo Park, M.D, PhD

DOI: 10.4244/EIJ-D-18-01206

anention Citation: Kim DW, Om SY, Park MW, Park HW, Lee PH, Kang DY, Ahn JM, Lee CW, Park SW, Park SJ, Her SH, Park DW. Comparative Effectiveness Analysis of Percutaneous Coronary Intervention vs. Coronary Artery Bypass Grafting in Patients with Chronic Kidney Disease and Unprotected Left Main Coronary Artery Disease : Insights From a Large-Sized All-Comers Registry. EuroIntervention 2019; Jaa-624 2019, doi: 10.4244/EIJ-D-18-01206

Manuscript submission date: 19 December 2018

Revisions received: 26 April 2019, 06 June 2019, 02 July 2019

Accepted date: 01 August 2019

Online publication date: 06 August 2019

Disclaimer: This is a PDF file of a "Just accepted article". This PDF has been published online early without copy editing/typesetting as a service to the Journal's readership (having early access to this data). Copy editing/typesetting will commence shortly. Unforeseen errors may arise during the proofing process and as such Europa Digital & Publishing exercise their legal rights concerning these potential circumstances.

Comparative Effectiveness Analysis of Percutaneous Coronary Intervention vs. Coronary Artery Bypass Grafting in Patients with Chronic Kidney Disease and Unprotected Left Main Coronary Artery Disease :

Insights From a Large-Sized All-Comers Registry

Dae-Won Kim^{1*}, MD, PhD; Sang Yong Om^{2*}, MD; Mahn-Won Park¹, MD, PhD; Ha Wook Park¹, MD; Pil Hyung Lee², MD, PhD; Do-Yoon Kang², MD; Jung-Min Ahn², MD, PhD; Cheol-Whan Lee², MD, PhD; Seong-Wook Park², MD, PhD; Seung-Jung Park², MD, PhD; Sung-Ho Her¹, MD, PhD and Duk-Woo Park², MD, PhD

¹Division of Cardiology, Daejeon St. Mary's hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

²Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Short title: CKD and outcome in LMCAD

Dr. D.W. Kim* and S.Y. Om* contributed equally to this article

Correspondence to: Sung-Ho Her, MD. PhD and Duk-Woo Park, MD, PhD

Division of Cardiology, Daejeon St. Mary's hospital, 64, Daeheung-ro, Jung-gu, Daejeon 34943, Korea (Dr. S.H. Her) and Division of Cardiology, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea (Dr. D.W. Park)

E-mail address: hhhsungho@naver.com or dwpark@amc.seoul.kr

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

CONDENSED ABSTRACT

Among 4894 patients with LMCAD, renal insufficiency was graded according to the estimated glomerular filtration rate (eGFR). The primary outcome was major adverse cardiocerebrovascular event (MACCE), defined as death, myocardial infarction, stroke, or any revascularization.

At 2 years, after adjustment, the adjusted risk of MACCE was similar between percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) in patients with preserved or moderate renal dysfunction. However, PCI was associated with a significantly higher risk of MACCE compared to CABG (HR 1.88, 95% CI 1.08-3.25, P=0.02) in patients ABSTRACT with severe renal dysfunction

Aims: Outcomes according to the status of renal insufficiency were not fully evaluated in left main coronary artery disease (LMCAD).

Methods and results: Among 4894 patients with LMCAD, renal insufficiency was graded according to the estimated glomerular filtration rate (eGFR). The primary outcome was major adverse cardiocerebrovascular event (MACCE), defined as death, myocardial infarction, stroke, or any revascularization. 3,824 (78%) had group 1 (eGFR $\geq 60 \text{ ml} \cdot \text{min} -1 \cdot 1.73 \text{ m}^2$), 838 (17%) had group 2 (eGFR \geq 30 and <60), and 232 (5%) had group 3 (eGFR <30). At 2 years, after adjustment, compared with group 1, the risk of MACCE was significantly higher in group 2 (hazard ratio [HR] 1.46, 95% confidence interval [CI] 1.18-1.79) and in group 3 (HR 3.39, 95% CI 2.61-4.40). Meanwhile, the P interaction for MACCE across groups was 0.20. The adjusted risk of MACCE was similar between percutaneous coronary intervention (PCI) and coronary

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

artery bypass grafting (CABG) in group 1 or 2. However, PCI was associated with a significantly higher risk of MACCE compared to CABG (HR 1.88, 95% CI 1.08-3.25) in group 3.

Conclusions: The degree of renal insufficiency was proportionately associated with unfavorable outcomes in patients with LMCAD. In group 3, PCI was associated with a higher risk of MACCE compared with CABG. Also, the effect of PCI vs. CABG on MACCE was consistent, with PCI being associated less bleeding and CABG being associated with less repeat copyright EuroIntervention revascularization

Keywords: left main, death, renal insufficiency

ABBREVIATIONS

LMCAD left main coronary artery disease

CABG coronary artery bypass graft

PCI percutaneous coronary intervention

CKD chronic kidney disease

IRIS-MAIN Interventional Research Incorporation Society-Left MAIN Revascularization

MACCE major adverse cardiocerebrovascular event

INTRODUCTION

Among several anatomical types of obstructive coronary artery disease (CAD), left main coronary artery disease (LMCAD) is associated with worst clinical outcomes¹. Coronary-artery bypass graft surgery (CABG) has traditionally been the standard of care for revascularization treatment of unprotected LMCAD. Over the last two decades, however, percutaneous coronary intervention (PCI) has become an alternative strategy for selected patients with LMCA disease^{2,3}. Owing to a higher rate of major cardiovascular events and mortality in patients with significant LMCA disease, identification of clinical factors associated with worse clinical outcomes and risk stratification is clinically important in the real-world.

The relationship between the chronic kidney disease (CKD) and an increased risk of cardiovascular events has been shown by many epidemiologic studies^{4,5}. Furthermore, several studies suggested that patients with CKD have poor outcomes after coronary revascularization^{6,7}. Previous studies identified clinical risk factors associated with poorer outcomes in patients with LMCAD⁸⁻¹⁰. However, little is known about the effect of the renal insufficiency on clinical outcomes in patients with significant LMCAD. In the present study, we therefore evaluated clinical outcomes in patients with significant LMCAD stratified by the degree of renal insufficiency and the relative clinical outcomes after PCI and CABG stratified by the differential levels of renal function using data from the large multinational "all-comers" Interventional Research Incorporation Society-Left MAIN Revascularization (IRIS-MAIN) registry.

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

METHODS

Study Population

The study population was part of the IRIS-MAIN registry (ClinicalTrials.govnumber, NCT01341327). The IRIS-MAIN is a nonrandomized, multinational, observational registry which consists of a cohort of consecutive patients with significant unprotected LMCAD who were treated with PCI, CABG, or medication alone. Data were collected on patients who were diagnosed as significant LMCAD (> 50% by visual estimation) at approximately 65 centers in the Asia-Pacific region. From the registry, 5,566 consecutive patients from January 2003 to September 2017 were evaluated. Among them, 118 patients who had incomplete data, 145 patients who did not have the creatinine level, and 164 patients who did not have the angiographic data were excluded. After further excluding patients who had cardiogenic shock, prior CABG, or valvular heart disease, 4,894 patients were included in the current analysis (**Figure 1**). The institutional review board at each hospital approved the use of clinical information in those patients for this study.

Variables and outcome data were collected by specialized personnel using a electronic case report form at each center. Monitoring and verification of registry data were periodically performed in participating hospitals by the staff of the coordinating center (Clinical Research Center, Asan Medical Center, Seoul, Korea). Follow-up was conducted during hospitalization and at 1, 6, 12 months after the index treatment and annually thereafter via an office visit or telephone contact.

Outcomes and Definitions

The primary outcome was a major adverse cardiocerebrovascular event (MACCE), which was

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

defined as a composite of death from any cause, myocardial infarction (MI), stroke, or any revascularization. Death was considered as cardiac unless an unequivocal noncardiac cause could be established. MI was defined as follows; if occurring within 48 hours following the index treatment, a combination of at least 5 fold increase in the CK-MB with either new pathological Q waves or new bundle branch block, with either new graft or native coronary occlusion documented on angiography, new regional wall motion abnormality or loss of viable myocardium on imaging studies^{11,12}. Stroke was defined as a loss of neurological function caused by an ischemic or hemorrhagic event with residual symptoms at least 24 hours after the onset or leading to death and was confirmed by a neurologist on the basis of imaging modalities. Any revascularization included any type of percutaneous or surgical revascularization procedure, regardless of whether the procedure was performed on a target or non-target lesion. Thrombolysis in Myocardial Infarction (TIMI) major bleeding was defined as overt clinical bleeding associated with a drop in hemoglobin of greater than 5 g/dL or in hematocrit of greater than 15% (absolute). All events were based on the clinical diagnoses assigned by the patient's physician and were centrally adjudicated by an independent group of clinicians.

Statistical Analysis

Continuous variables were expressed as median (interquartile range), and categorical variables were presented as numbers and percentages. Differences between the groups, categorized according to the estimated glomerular filtration rate (eGFR), were compared using analysis of variance (ANOVA) or Kruskal-Wallis test for continuous variables, and chi-square test or Fisher's exact test for categorical variables as appropriate. Post-hoc tests were performed using ANOVA with Tukey method or Kruskal-Wallis test with Bonferroni method. Cumulative rates of clinical events were calculated using Kaplan-Meier survival analysis, and log-rank test was

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

used for comparisons across the groups.

A univariate Cox proportional hazard regression model was used to evaluate potential predictors of clinical outcomes. The proportional hazard assumption was checked for all screened covariates, and no relevant violations were found. To assess the independent association of eGFR category to clinical outcome, multivariate Cox proportional hazard regression was performed using variables with p value of < 0.10 in univariate analysis. Using the group of eGFR \geq 60 ml/min/1.73m2 as the reference category, we estimated the hazard ratios and 95% confidence intervals for the groups of $30 \leq$ eGFR < 60 and eGFR < 30 ml/min/1.73m2. Finally, we compared the rates of primary outcome after PCI and CABG according to the eGFR at baseline. To adjust the differences in baseline characteristics, multivariate Cox proportional hazard regression model was performed using clinically relevant variables and statistically significant variables with a P value <0.10 by univariate analysis. All reported p values were two-sided and were not adjusted for multiple testing. All statistical analyses were performed using IBM SPSS Statistics 22.0 (IBM Corp., Armonk, NY, USA).

RESULTS

COPYRIO Baseline Characteristics

Patients were divided into 3 groups according to the eGFR at baseline; group 1 including patients with eGFR $\geq 60 \text{ ml} \cdot \min -1 \cdot 1.73 \text{m} \cdot 2$ (n=3824, 78.1%), group 2 with 30 \leq eGFR< 60 (n=838, 17.1%), and group 3 with eGFR < 30 (n=232, 4.7%). 121 patients (52%) in group 3 were on dialysis. Baseline clinical characteristics were substantially different across the three groups (**Table 1**). Group 3 had higher risk-factor profiles. With regard to treatment strategy, PCI was most frequently used in three groups, whereas medical therapy alone was most

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

frequently selected in group 3. Regarding the information related to PCI, the group 3 tended to have a higher proportion of 2nd generation of DES. The use of intravascular ultrasound (IVUS) during PCI was less frequent in group 3. There was no significant difference in the stent technique at left main lesion among three groups on the whole, while bifurcation stenting was more prevalent in the group 1 and 2 compared to group 3 in part. In terms of drug therapy, antiplatelet agents and statins were less frequently used in group 3 at baseline as well as during follow-up (**Supplemental Table 1**).

HIOT

Clinical Outcomes

During the median follow-up duration of 1,289 (interquartile range, 729-1,913) days, there were 314 deaths, 39 MIs, 70 cerebrovascular events, and 205 any revascularization. Overall, the cumulative incidence of MACCE at 2 years was lowest in group 1 (9.1%) and highest in group 3 (36.2%), and this trend was consistent regardless whether the patient received CABG, PCI or medical therapy (**Figure 2**). The incidences of individual outcome of death, MI, or stroke were significantly higher in patients with higher degree of renal insufficiency, whereas the rate of any revascularization was comparable between the three groups (4.2% in group 1 vs. 3.8% in group 2 vs. 4.7% in group 3, p=0.79). The incidence of major bleeding events (8.5% in the group 1 vs. 10.3% in the group 2, 12.5% in the group 3, p=0.043) was also associated in proportion to the severity of renal insufficiency (**Supplemental Table 2**).

The landmark analysis revealed that the difference of MACCE according to the eGFR occurred mostly within 1 year. According to the 30 days landmark analysis, there was no significant difference in the rate of MACCE between the group 2 and 3. However, after 1 year, patients in the group 3 consistently had a highest risk of MACCE, whereas there was no

significant difference between the group 1 and 2 (**Figure 3**). After multivariate adjustment for Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

the baseline differences between the three groups, the adjusted risk of MACCE was significantly higher in group 3 compared with group 1 or 2 and was driven mainly by the higher risks of death and MI (**Table 2**).

PCI vs. CABG According to the Status of Renal Function

The Kaplan-Meier 2-year survival estimates for MACCE after PCI and CABG stratified by the status of baseline renal function are shown in **Figure 4.** The cumulative rates of MACCE did not differ between PCI and CABG among patients with group 1 or group 2. In contrast, there was a significantly higher rate of MACCE with PCI than with CABG in group 3 (38.5% vs. 24.7% at 2 years, P=0.01, P for interaction=0.08). Clinical outcomes after adjusting for possible confounders using Cox regression model are summarized in **Table 3.** The risk of MACCE was significantly higher with PCI than with CABG in group 3 (adjusted hazard ratio 1.88, 95% confidence interval 1.08-3.25, P=0.02), whereas it was similar between PCI and CABG in patients with group 1 or group 2. Statistical interaction was not found between the status of renal function and revascularization modality on MACCE (P for interaction=0.20). The risk of any revascularization tended to be higher with PCI whereas the risk of TIMI major bleeding was higher with CABG regardless of eGFR level. The results of the sensitivity analysis excluding patients who received first-generation DESs were largely consistent (**Supplemental Table 3**).

DISCUSSION

From this large, all-comers registry involving patients with LMCAD, we found that the severity of renal insufficiency was proportionately associated with an increased risk of serious adverse

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

events, regardless of the initial treatment strategy. Among patients with preserved or moderate renal dysfunction, the risk of MACCE after PCI and CABG was comparable, whereas the MACCE risk was significantly higher with PCI than with CABG in patients with severe renal dysfunction. Although a statistically significant interaction was not observed, further studies are required to confirm this observation and to help guide decision making between CABG and PCI in LMCAD patients with CKD.

Although some studies suggested less association between the renal function and clinical outcomes after PCI in patients with obstructive CAD^{13,14}, the majority of studies showed that patients with renal insufficiency were significantly associated with unfavorable outcomes^{7,15,16}. However, patients with LMCAD were mostly excluded in prior studies, thus still lacking of the clinical relevance of renal impairment in patients with such complex lesions. In our study involving this high-risk group of patients, we found that renal insufficiency had a detrimental effect on outcomes including death and MACCE which was proportional to the levels of eGFR. Of note, patients with severe renal insufficiency showed higher cumulative event rates sustained beyond 1 year in the landmark analysis. An association between the severities of renal dysfunction and ischemic cardiovascular events shown in our study is not surprising given the well-known biopathologic features of renal dysfunction such as negative plaque characteristics, heightened states of arterial inflammation, or sympathetic nervous system activation¹⁷⁻²⁰. However, our study adds on a more real-world explanation of this observation. Patients with lower eGFR received suboptimal medical therapies of antiplatelet agents and statin, possibly because of the concerns of pharmacokinetic issues of the drugs related to renal excretion and increased bleeding tendency. This treatment pattern seems to be in line with the preferential selection of medical therapy alone rather than PCI or CABG in LMCAD patients with severe renal insufficiency. Furthermore, less frequent use of

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

intravascular ultrasound-supported PCI in patients with lower eGFR may imply a more complicated or suboptimal procedure which may have related with a worse prognosis.

A comparison between PCI and CABG in patients with LMCAD and CKD has been recently reported in the subgroup analysis of randomized EXCEL trial.²¹ There were no significant differences between PCI and CABG in terms of death, stroke, or MI at 3 years after the procedures in patients with and without CKD. However, the results should be interpreted with caution as the number of CKD patients was relatively small (n=361) and the majority of the CKD patients had a moderate degree of renal impairment. The addition of our study was to include larger number of real-world patients and to demonstrate the comparative effectiveness between PCI and CABG in LMCAD patients with severe renal dysfunction, who were usually excluded from randomized trials. This higher-risk subgroup seemed to benefit more after CABG than after PCI regarding serious ischemic adverse events. A plausible explanation would be that patients with advanced renal impairment may hold severe coronary artery characteristics including a higher degree of calcification and atherosclerotic plaque burden, and consequently may distinctly benefit from bypass grafts which provide more durable and protective role against future ischemic events. Because the presence of poor renal function is frequently encountered in the daily clinical practice during heart team discussion to opt for PCI or CABG, subsequent studies will be critical for the development of optimal treatment strategies according to the degree of CKD for high-risk patients with LMCAD.

LIMITATIONS

This study has several limitations. First, there were different risk profiles, comorbidities, and anatomical disease extent or complexity among each CKD group as well as PCI vs. CABG group (**Supplemental Tables 4 to 7**). Although confounding covariates were adjusted in the multivariable models, the results are vulnerable to unmeasured confounders. Second, variables

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

that are known in clinical practice to have a profound influence on the choice of revascularization (e.g., SYNTAX score or patient frailty) were not available for this analysis. A lack of such information could have penalized the CABG group relative to the PCI group. Third, the number of patients included in group 3 was relatively small. Although the different outcome after PCI and CABG in these patients was one major finding of our study, interpretation of the results should be cautious, and the findings should be considered hypothesis generating only. Fourth, the impact of incomplete revascularization on outcome between PCI and CABG could not be assessed as the registry does not capture this variable for CABG. Finally, relevant information regarding the renal outcomes such as acute renal failure CONCLUSIONS functi or new requirement of dialysis was not available in our study.

The presence and severity of renal dysfunction were associated with an increased risk of serious adverse events in real-world patients with LMCAD. Among LMCAD patients with severe renal dysfunction, CABG was associated with a lower risk of MACCE as compared with PCI. Also, the effect of PCI vs. CABG on MACCE was consistent, with PCI being associated less bleeding and CABG being associated with less repeat revascularization. Further studies are required to confirm the differential effect of PCI and CABG by degrees of renal function, which may help guide decision making in patients with LMCAD.

Impact on daily practice

The analysis of the IRIS-MAIN registry showed clinical implications of renal insufficiency in LMCAD patients. Patients with decreasing levels of renal function had a higher risk-profiles of baseline clinical, anatomical, and procedural characteristics and also had unfavorable clinical outcomes. According to the eGFR levels, CABG showed favorable results in patients with advanced renal insufficiency compared with PCI in LMCAD patients, while PCI and CABG had no significant difference in patients with less severe renal insufficiency.

.... statement
None of the authors have any conflicts of interest to declare.
Funding
This work was support. This work was supported by a grant from the CardioVascular Research Foundation, Seoul,

Korea (2015-09

References

1. Yusuf S, Zucker D, Peduzzi P, Fisher LD, Takaro T, Kennedy JW, Davis K, Killip T, Passamani E, Norris R. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. *Lancet (London, England)*. 1994;344:563-70.

2. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, Stahle E, Feldman TE, van den Brand M, Bass EJ, Van Dyck N, Leadley K, Dawkins KD, Mohr FW, Investigators S. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. *N Engl J Med.* 2009;360:961-72.

3. Park SJ, Kim YH, Park DW, Yun SC, Ahn JM, Song HG, Lee JY, Kim WJ, Kang SJ, Lee SW, Lee CW, Park SW, Chung CH, Lee JW, Lim DS, Rha SW, Lee SG, Gwon HC, Kim HS, Chae IH, Jang Y, Jeong MH, Tahk SJ, Seung KB. Randomized trial of stents versus bypass surgery for left main coronary artery disease. *N Engl J Med.* 2011;364:1718-27.

4. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. *N Engl J Med.* 2004;351:1296-305.

5. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, McAlister F, Garg AX. Chronic kidney disease and mortality risk: a systematic review. *Journal of the American Society of Nephrology : JASN*. 2006;17:2034-47.

6. Best PJ, Lennon R, Ting HH, Bell MR, Rihal CS, Holmes DR, Berger PB. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. *Journal of the American College of Cardiology*. 2002;39:1113-9.

7. Blackman DJ, Pinto R, Ross JR, Seidelin PH, Ing D, Jackevicius C, Mackie K, Chan C, Dzavik V. Impact of renal insufficiency on outcome after contemporary percutaneous coronary intervention. *American heart journal.* 2006;151:146-52.

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

8. Taylor HA, Deumite NJ, Chaitman BR, Davis KB, Killip T, Rogers WJ. Asymptomatic left main coronary artery disease in the Coronary Artery Surgery Study (CASS) registry. *Circulation*. 1989;79:1171-9.

9. Pryor DB, Shaw L, Harrell FE, Jr., Lee KL, Hlatky MA, Mark DB, Muhlbaier LH, Califf RM. Estimating the likelihood of severe coronary artery disease. *The American journal of medicine*. 1991;90:553-62.

10. Giannoglou GD, Antoniadis AP, Chatzizisis YS, Damvopoulou E, Parcharidis GE, Louridas GE. Prevalence of narrowing >or=50% of the left main coronary artery among 17,300 patients having coronary angiography. *The American journal of cardiology*. 2006;98:1202-5.

11. Moussa ID, Klein LW, Shah B, Mehran R, Mack MJ, Brilakis ES, Reilly JP, Zoghbi G, Holper E, Stone GW. Consideration of a new definition of clinically relevant myocardial infarction after coronary revascularization: an expert consensus document from the Society for Cardiovascular Angiography and Interventions (SCAI). *Journal of the American College of Cardiology*. 2013;62:1563-70.

12. Vranckx P, Cutlip DE, Mehran R, Kint PP, Silber S, Windecker S, Serruys PW. Myocardial infarction adjudication in contemporary all-comer stent trials: balancing sensitivity and specificity. Addendum to the historical MI definitions used in stent studies. *EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.* 2010;5:871-4.

13. Best PJ, Berger PB, Davis BR, Grines CL, Sadeghi HM, Williams BA, Willerson JT, Granett JR, Holmes DR, Jr. Impact of mild or moderate chronic kidney disease on the frequency of restenosis: results from the PRESTO trial. *Journal of the American College of Cardiology*. 2004;44:1786-91.

14. Halkin A, Mehran R, Casey CW, Gordon P, Matthews R, Wilson BH, Leon MB, Russell

Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal

ME, Ellis SG, Stone GW. Impact of moderate renal insufficiency on restenosis and adverse clinical events after paclitaxel-eluting and bare metal stent implantation: results from the TAXUS-IV Trial. *American heart journal*. 2005;150:1163-70.

15. Narula OS, Narula JT. Junctional pacemakers in man. Response to overdrive suppression with and without parasympathetic blockade. *Circulation*. 1978;57:880-9.

16. Zhu ZB, Zhang RY, Zhang Q, Zhang JS, Hu J, Yang ZK, Shen WF. Moderate-severe renal insufficiency is a risk factor for sirolimus-eluting stent thrombosis. The RIFT study. *Cardiology*. 2009;112:191-9.

17. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. *Kidney international*. 2003;63:793-808.

18. Parfrey PS, Foley RN, Harnett JD, Kent GM, Murray DC, Barre PE. Outcome and risk factors for left ventricular disorders in chronic uraemia. *Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.* 1996;11:1277-85.

19. Cheung AK, Sarnak MJ, Yan G, Dwyer JT, Heyka RJ, Rocco MV, Teehan BP, Levey AS. Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. *Kidney international*. 2000;58:353-62.

20. Muntner P, He J, Astor BC, Folsom AR, Coresh J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. *Journal of the American Society of Nephrology : JASN*. 2005;16:529-38.

21. Giustino G, Mehran R, Serruys PW, Sabik JF, 3rd, Milojevic M, Simonton CA, Puskas JD, Kandzari DE, Morice MC, Taggart DP, Gershlick AH, Genereux P, Zhang Z, McAndrew

T, Redfors B, Ragosta M, 3rd, Kron IL, Dressler O, Leon MB, Pocock SJ, Ben-Yehuda O, Kappetein AP, Stone GW. Left Main Revascularization With PCI or CABG in Patients With Chronic Kidney Disease: EXCEL Trial. *Journal of the American College of Cardiology*. 2018;72:754-65.

copyright EuroIntervention

Figure legends

Figure 1. Study Population

Figure 2. Kaplan-Meier curves of the Primary Composite Outcome According to the Levels of Baseline Renal Function

Figure 3. Kaplan-Meier Curves with 30 Days and 1-Year Landmark Analyses of the Primary Composite Outcome According to the Levels of Baseline Renal Function

Figure 4. Kaplan-Meier curves of the Primary Composite Outcome Between PCI and CABG According to the Levels of Baseline Renal Function

Table 1. Baseline Characteristics

<i>t</i>	eGFR≥60	30≤eGFR<60	eGFR<30	
/ariable	(N=3824)	(N=838)	(N=232)	P value
Demographics and laboratory				
indings				
Age (years)	64 (56, 70)	71 (64, 76)	69 (62, 74)	<0.001
Male sex	2969 (77.6)	622 (74.2)	163 (70.3)	0.01
BMI (kg/m2)	24.5 (22.7, 26.2)	24.6 (22.7, 26.4)	23.4 (21.4, 25.7)	<0.001
Diabetes	1244 (32.5)	388 (46.3)	180 (77.6)	< 0.001
Hypertension	2264 (59.2)	636 (75.9)	215 (92.7)	< 0.001
Dyslipidemia	2376 (62.1)	487 (58.1)	125 (53.9)	0.01
Current/recent smoker	1008 (26.4)	177 (21.1)	36 (15.5)	< 0.00
Prior myocardial infarction	324 (8.5)	104 (12.4)	27 (11.6)	< 0.00
Prior CHF	65 (1.7)	45 (5.4)	27 (11.6)	< 0.001
Prior PCI	583 (15.3)	158 (18.9)	47 (20.3)	0.01
Atrial fibrillation/flutter	63 (1.7)	42 (5.0)	12 (5.2)	< 0.001
Cerebrovascular disease	271 (7.1)	100 (11.9)	36 (15.5)	< 0.00
PAD	163 (4.3)	83 (9.9)	25 (10.8)	< 0.001
Chronic lung disease	106 (2.8)	24 (2.9)	13 (5.6)	0.05
Dialysis	0	0	121 (52)	< 0.001
HDL-C (mg/dL)	41 (35, 48)	39 (32, 47)	35 (28, 43)	< 0.001
LDL-C (mg/dL)	97 (73, 123)	90.35 (69, 117)	84 (63, 106)	< 0.001
CRP (mg/dL)	0.14 (0.06, 0.44)	0.22 (0.08, 0.65)	0.62 (0.21, 2.00)	<0.001

Clinical diagnosis				0.004
Stable angina	1607 (42.0)	316 (37.7)	77 (33.2)	
Acute coronary syndrome	2217 (58.0)	522 (62.3)	155 (66.8)	
Angiographic finding (%)				
LAD	1770 (46.3)	334 (39.9)	92 (39.7)	< 0.001
LCX	866 (22.7)	188 (22.4)	51 (22.0)	0.97
RCA	481 (12.6)	104 (12.4)	22 (9.5)	0.38
Medications (%)				
Aspirin	3706 (97.2)	785 (94.1)	204 (88.3)	< 0.001
Clopidogrel	3322 (87.2)	690 (82.9)	178 (77.4)	<0.001
Ticagrelor	102 (2.7)	20 (2.4)	4 (1.7)	0.63
Prasugrel	45 (1.2)	7 (0.8)	3 (1.3)	0.66
Beta blocker	2363 (63.1)	485 (59.2)	138 (59.7)	0.08
Calcium channel blocker	2173 (58.2)	465 (56.8)	111 (48.5)	0.02
ACEI/ARB	1234 (33.2)	333 (41.1)	117 (51.1)	<0.001
Statin	3612 (95.3)	757 (91.3)	174 (75.0)	<0.001
Initial Treatment (%)				<0.001
Medical therapy	437 (11.4)	137 (16.4)	42 (18.1)	
PCI	2289 (59.9)	419 (50.0)	117 (50.4)	
CABG	1098 (28.7)	282 (33.6)	73 (31.5)	
Stent generation				0.02
1 st -DES	540 (23.7)	95 (22.9)	15 (12.8)	
2 nd -DES	1736 (76.3)	320 (77.1)	102 (87.2)	

IVUS use during PCI (%)	1850 (80.7)	306 (72.9)	85 (71.4)	<0.001
GpIIb-IIIa inhibitor during PCI (%)	199 (8.7)	33 (7.9)	5 (4.2)	0.22
Stent technique at LM (%)				0.81
LM only	440 (19.3)	76 (18.2)	23 (19.5)	
LM to LAD crossover	1219 (53.5)	218 (52.3)	68 (57.6)	
LM to LCX crossover	93 (4.1)	22 (5.3)	4 (3.4)	
2-stent technique	525 (23.1)	101 (24.2)	23 (19.5)	0.04
Crush	336 (64.5)	63 (62.4)	12 (52.2)	
Culotte	12 (2.3)	0	3 (13.0)	
Other techniques	64 (33.2)	13 (37.6)	5 (34.8)	

Values are median (interquartile range) or n (%).

ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin II receptor blocker; BMI: body mass index; CHF: congestive heart failure; CABG: coronary artery bypass grafting; CRP: C-reactive protein; DES: drug-eluting stent; eGFR: estimated glomerular filtration rate; HDL-C: high density lipoprotein cholesterol; IVUS: intravascular ultrasound; LDL-C: low density lipoprotein cholesterol; LAD: left anterior descending artery; LCX: left circumflex artery; LM: left main; PCI: percutaneous coronary intervention; PAD: peripheral artery disease

			C		ļ					
	Event	Rate, %	픘	95% CI	Ω	P value	ĦŖ	95% CI	Ō	P value
MACCE			10							
≥60*	347	9.1	1.00	SL		< 0.001	1.00			<0.001
≥30, <60	134	16.0	1.46	1.18	1.79	0.0004	1.43	1.16	1.77	0.0008
< 30	84	36.2	3.39	2.61	4.40	< 0.001	2.73	1.91	3.92	<0.001
Death				-	N.					
≥60	154	4.0	1.00		E	< 0.001	1.00			
≥30, <60	89	10.6	1.78	1.36	2.34	< 0.001	1.83	1.39	2.40	<0.001
<30	71	30.6	4.23	2.78	6.41	<0.001	4.36	2.85	6.67	<0.001
Myocardial Infarction						in				
≥60	25	0.7	1.00			<0.001	1.00			
≥30, <60	Ю	0.6	0.87	0.33	2.28	0.78	0.69	0.26	1.87	0.47

Table 2. Adjusted Hazard Ratios of Clinical Outcomes

Disclaimer : As a public service to our readership, this article peer reviewed by the Editors of EuroIntervention - has been published is the sole responsibility of the authors, and not that of the journal	Multivariate analysis ¹ : Cox proportional hazards model with backward elimination method Multivariate analysis ² : All baseline covariate were adjusted	*Values of estimated glomerular filtration rate	CI : confidence interval; HR : hazard ratio; MACCE: major adverse cardiocerebrovascular event; TIMI: thrombolysis in myocardial infarction	< 30	≥30, <60	≥60	TIMI major bleeding	< 30	≥30, <60	≥60	Stroke	< 30	≥30, <60	≥60	Any revascularization	<30
readership, this ·s, and not that	proportiona aseline cova	erular filtrati	: hazard ra	29	86	325		6	20	44		1 1	32	162		9
; article peer I of the journal	I hazards m ariate were	ion rate	itio; MACCE	12.5	10.3	8.5		2.6	2.4	1.2		4.7	3.8	4.2	~	3.9
reviewed by the	nodel with t adjusted		∷ major adv	1.58	1.23	1.00		1.79	1.64	1.00		1.06	0.87	1.00	Ο,,	5.98
Editors of Eurol	backward el		erse cardio	1.08	0.97			0.74	0.94	n'	e	0.57	0.59			2.73
ntervention - hu	imination n		cerebrovasc	2.32	1.56	<u>مر</u>	E	4.31	2.85	e.		1.98	1.27			13.05
ıs been publishe	nethod		ular event;	0.02	0.09	0.03		0.20	0.08	0.15		0.86	0.47	0.74		< 0.001
ed immediately	С	,0	TIMI: thron	1.41	1.23	1.00		2.30	1.58	1.00		0.84	0.91	1.00		3.97
upon acceptanc			nbolysis in i	0.80	0.95			0.86	0.90			0.32	0.62			1.28
æ as it was rece			nyocardial	2.49	1.58			6.19	2.77			2.15	1.36			12.33
immediately upon acceptance as it was received. The content of this article			infarction	0.23	0.11	0.18		0.10	0.11			0.71	0.66			0.017
nt of this article																

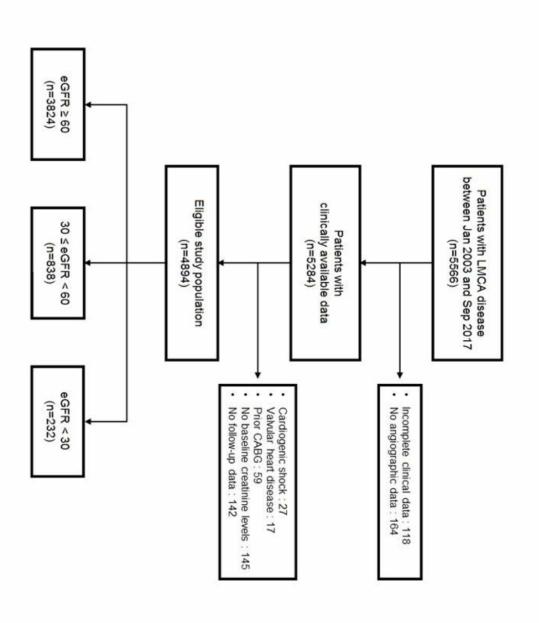
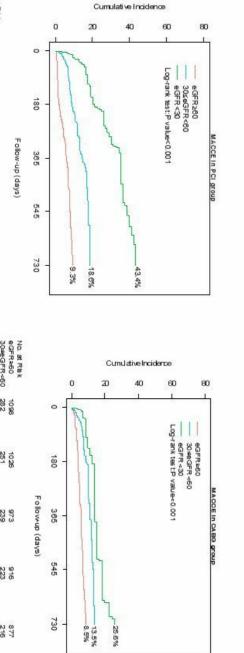
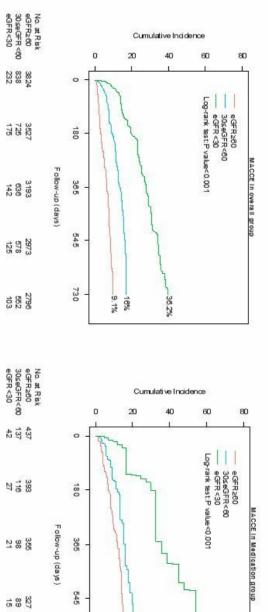
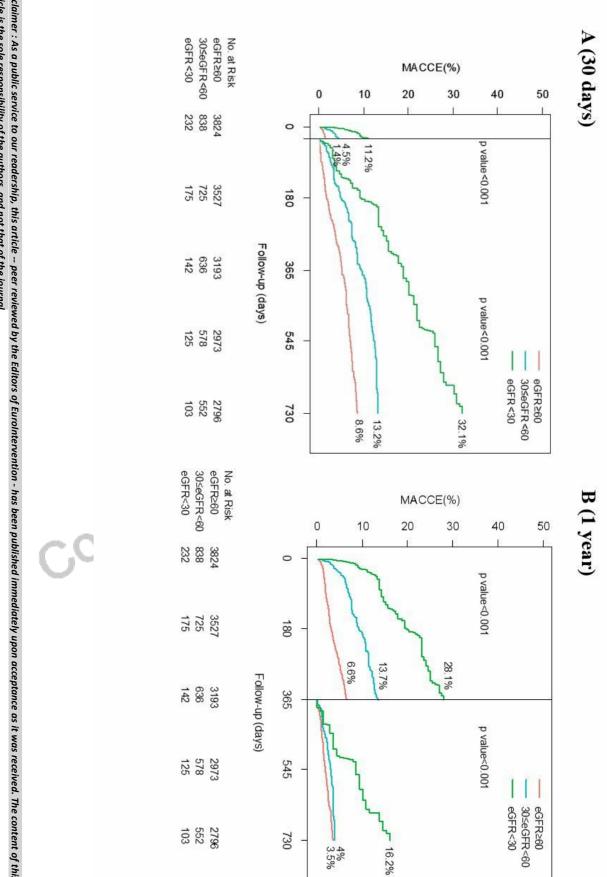

		ar Event , n (%)	(Crude R	lisk	Ad	justed Ri	sk*	
	Revasc	ularizatio							
	n	type		95%	Р			Р	P for
Patient Groups		CABG	HR	S2%	value	HR	95% CI	valu	intera
	PCI	(referen		C	value			е	ction
		ce)							
Preserved renal fun	ction (eGFR >60)							
MACCE	190 (8.3)	89 (8.1)	1.0 7	0.83- 1.38	0.58	1.11	0.86- 1.43	0.42	0.20
	50		0.4	0.31-	<0.00		0.33-	<0.	0.01
Death	(2.2)	55 (5.0)	5	0.66	10	0.48	0.70	001	
Myocardial	11		0.9	0.34-	0.05	0.00	0.32-	0.75	0.33
infarction	(0.48)	6 (0.55)	.1	2.47	0.85	0.86	2.32	0.75	
Any revascularizatic	124	21 (1.9)	3.0	1.90-	<0.00	3.10	1.95-	<0.	0.67
1	(5.4)		2	4.80	1	5.10	4.94	001	
Stroke	22 (1.0)	16 (1.5)	0.6 7	0.35- 1.28	0.23	0.74	0.39- 1.41	0.35	0.76
TIMI major	28	289	0.0	0.03-	<0.00	0.04	0.03-	<0.	<0.00
bleeding	(1.2)	(26.3)	4	0.06	1	0.04	0.06	001	1
Moderate renal dys	functio	n (eGFR ≥	: 30 a	nd <60))				
MACCE	71	37	1.4	0.96-	0.08	1.38	0.92-	0.12	
	(16.9)	(13.1)	3	2.13			2.05		
Death	40 (9.5)	28 (9.9)	1.0 3	0.64- 1.67	0.90	0.93	0.57- 1.51	0.79	
Myocardial infarction	4 (1.0)	0	-	-	0.99	-	-	0.99	
Any revascularizatic		4 (1.4)	4.5	1.57-	0.005	4.42	1.53-	0.00	

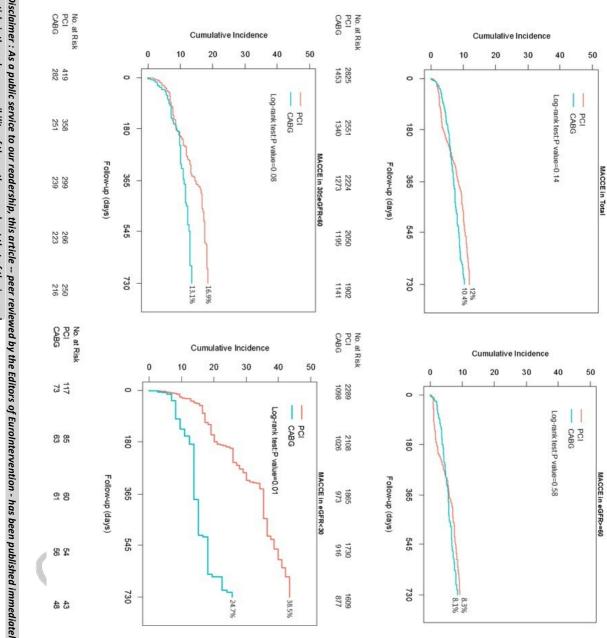
Table 3. Risk of Primary Composite Outcome After PCI and CABG According to theStatus of Baseline Renal Function.

		(5.7)		3	13.1			12.8	6
Stroke		11	0 (2 0)	0.9	0.39-	0.97	0.94	0.38-	0.90
SUOKE		(2.6)	8 (2.8)	8	2.44	0.97	0.94	2.35	0.90
TIMI	major	15	69 (24.5)	0.1	0.08-	< 0.00	0.13	0.08-	<0.
bleeding		(3.6)	09 (24.3)	3	0.23	1	0.15	0.23	001
Severe rena	ıl dysfun	ction (eGFR <30))					
MACCE		45	18	2.0	1.19-	0.01	1.88	1.08-	0.02
WIACCE		(38.5)	(24.7)	6	3.56	0.01	1.00	3.25	0.02
Death		35	17	1.5	0.87-	0.14	1.30	0.72-	0.37
Death		(29.9)	(23.3)	5	2.77	0.14	1.50	2.34	0.57
Myocardial		7	1 (1.4)	5.4	0.67-	0.11	4.99	0.61-	0.13
infarction		(6.0)	1 (1.4)	7	44.5	0.11	4.55	40.7	0
Any revasc	ularizatic	8	1 (1.4)	6.8	0.85-	0.07	6.77	0.85-	0.07
		(6.8)	1 (1.4)	1	54.4	0.07		54.1	0.07
Stroke		2	3 (4.1)	0.4	0.08-	0.43	0.45	0.08-	0.38
Stroke		(1.7)	5 (4.1)	9	2.93	0.43	0.45	2.70	0.50
TIMI	major	7	20 (27.4)	0.2	0.09-	< 0.00	0.20	0.08-	<0.
bleeding		(6.0)		1	0.49	1	0.20	0.47	001


Abbreviations as in Table 1 and 2


*Cox proportional hazards model with backward elimination method




730

- 18.5%

- 57%

12 88

	Total	ه م	e	eGFR≥60		30≤	30≤eGFR<60		e	eGFR<30	
Variable PCI	CABG	σ	PCI	CABG	σ	PCI	CABG	σ	PCI	CABG	Ρ
(N=2825) ((N=1453)	value	(N=2289)	(N=1098)	value	(N=419)	(N=282)	value	(N=117)	(N=73)	value
At discharge											
2767	1393		2262	1062		400	268	2	105	63	
Aspirin (98.1)	(96.4)	0.001	(99)	(97.1)	<0.001	(95.7)	(96.1)	0.01	(89.7)	(87.5)	0.03
2599	1382		2142	1058	0007	375	262	2	82	62	
Statins (93)	(95.5)	0.001	(94.6)	(96.7)	0.007	(90.6)	(93.6)	0.16	(70.1)	(84.9)	0.02
	335		855	218		176	86		64	31	0
ACE IIIIIIDITOIS (40.3)	(23.4)	<0.001	(38.8)	(20.1)		(44)	(31.3)	0.001	(56.1)	(42.5)	0.07
Classide 2568	1229		2098	946		370	230		100	53	
Ciopidogrei (91.4)	(84.9)	<0.001	(92)	(86.4)	<0.001	(89.2)	(81.9)	0.006	(86.2)	(73.6)	0.03
CCB 1493	903	< 0.001	1218	697	< 0.001	219	167	0.10	56	39	0.57

Disclaimer : As	Beta blocker			Copieograf			ACE inhihitore	Statilis	Ctating		Acoirin	At 12 months	שבום טוטרגבו	Poto blockor	
Disclaimer : As a public service to our readership, this article peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this	1571	(53.8)	1306	(79)	1923	(38.8)	945	(93.4)	2595	(89.6)	2185		(67.3)	1855	(54.5)
our readership, tl	677	(55.2)	719	(55.1)	709	(27.8)	370	(96.5)	1392	(88.6)	1144		(50.6)	723	(62.9)
his article peer I	< 0.001	0.40	0 10		0001		0001		0001		96.0		\0.00T		
reviewed by the	1308	(55.1)	1091	(79.9)	1595	(38.9)	775	(95.3)	2149	(91.4)	1827	SU	(68.2)	1525	(54.8)
Editors of EuroInt	525 (52.9)	(כ.טר) טרר	בבס ובש טו	(0.0C) 30C	267 /26 8)		363 /36 1)	(97.6)	1066	(90)	892		(50.9)	549	(64.2)
ervention - has b	< 0.001	0.00					10001	0.00	0 001		50 U		~0.00T	0001	
een published i	217	(49.3)	175	(75.7)	268	(39.7)	139	(89.3)	366	(83.6)	296		(64.7)	262	(53.9)
mmediately upc	119	(52.2)	132	(50)	119	(+.cc) 00	00 (35 1)	(94.2)	262	(87)	208		(46.6)	129	(60.3)
on acceptance	< 0.001	0.40	0 1 0		× n nn1		80.0	0.04	50 D		ло 0 20		A0.001	10001	
as it was receive	46	(43.0)	40	(71.4)	60	(33.7)	31	(70.8)	80	(72.9)	62		(58.6)	68	(49.1)
ed. The content	33	(42.6)	29	(45.9)	28	(38.6)	27	(87.7)	64	(72.1)	44		(61.6)	45	(53.4)
of this	0.89	0.30	0 0 0		c 00 0	0.04	О до	0.007	700		0 01		0.00	מת	

JS CORONARY vas received. Ti	: percutaneou acceptance as it v	channel blocker, PCI: percutaneous coronary intervention ublished immediately upon acceptance as it was received. The content of this	lcium chanr been publisher	ıg, CCB: cal ervention - has	values are in (70). ACE: angiotensin-converting enzyme, CABG: coronary artery bypass grafting, CCB: calcium channel blocker, PCI: percutaneous coronary interventior Disclaimer : As a public service to our readership, this article peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal	nary artery reviewed by th	e, CABG: coro this article peer not that of the jou	ting enzym ur readership, he authors, and	(70). Insin-COnver Insin-conver	values are m (zo). ACE: angiotensin-converting enzyme, CABG: coronary Disclaimer : As a public service to our readership, this article peer revie article is the sole responsibility of the authors, and not that of the journal
			,¢						(%)	Valuec are n
(45.8) (37.2) (37.5)			(58.2)	<0.001	404 (49.9)	(61.5)	< 0.001	(48.4)	(60.1)	שפוש מוטכגפו
110 32			178	2		1085		588	1295	
(48.5) (37.9) (34.9)	(48.5)		(48.9)	Ċ		(53.2)	ر. ر	(50.8)	(51.9)	
112 33	112		153		170 (E) E)	943		604	1129	, D
(33) (49.4) (37.9)			(63.6)	×0.001		(67.5)		(39.1)	(66.3)	Сюрідоўгеі
71 39			192	0001		1200		452	1431	
63 (53.3) 0.33 (25.9) (24.6)	(د.دد) دە		(37.9)		C (20.7)	(37.8)		(28.2)	(37.4)	
			118			682		347	822	
(95) (65.8) (87.7)			(89.9)	0.000	(97.3)	(95.3)	/0.001	(96.3)	(93.3)	
266 75	266		365	0000	1064	2140		1394	2580	
(82.7)			(78.4)			(83)		(84.1)	(81.4)	
177 0.23 44	177		236	50 U	16 98/ 592	1477	0051	973	1757	Acoirin
							γ_{c}			At 24 months
(45.9) (48.9) (47.8)	(45.9)		(61.8)			(66.1)	k	(51.3)	(64.8)	

	eGFR≥60	30≤eGFR<60	eGFR<30	P value
	(N=3824)	(N=838)	(N=232)	P value
MACCE	347 (9.1)	134 (16.0)	84 (36.2)	<0.001
Death from any cause	154 (4.0)	89 (10.6)	71 (30.6)	<0.001
Cardiac death	122 (3.2)	73 (8.7)	53 (22.8)	<0.001
Myocardial infarction	25 (0.7)	5 (0.6)	9 (3.9)	<0.001
Stroke	44 (1.2)	20 (2.4)	6 (2.6)	0.008
Any revascularization	162 (4.2)	32 (3.8)	11 (4.7)	0.79
TIMI major bleeding	325 (8.5)	86 (10.3)	29 (12.5)	0.04
TIMI minor bleeding	490 (12.8)	118 (14.1)	27 (11.6)	0.51

Supplemental Table 2. Two-Year Clinical Outcomes According to the Categories of Baseline eGFR

Values are shown as Kaplan-Meier estimates (number and percentage of events).

MACCE was defined as a composite of death, myocardial infarction, stroke, or any revascularization.

eGFR: estimated glomerular filtration rate; MACCE: major adverse cardiocerebrovascular event; TIMI: thrombolysis in myocardial infarction

	2-Year Event Rate, n (%)	Rate, n (%)		Crude Risk			Adjusted Risk	⊼,
	Revascular	Revascularization type						
Patient Groups	PCI	CABG (reference)	HR	95% CI	P value	HR	95% CI	P value
Preserved renal function (eGFR	3FR >60)	2						
MACCE	136 (7.8)	89 (8.1)	1.04	0.80-1.36	0.77	1.05	0.81-1.38	0.70
Death	37 (2.1)	55 (5.0)	0.45	0.30-0.68	< 0.001	0.45	0.30-0.69	<0.001
Myocardial infarction	8 (0.5)	6 (0.5)	0.90	0.31-2.61	0.85	0.90	0.31-2.61	0.86
Any revascularization	86 (5.0)	21 (1.9)	2.87	1.78-4.62	< 0.001	3.00	1.86-4.84	<0.001
Stroke	19 (1.1)	16 (1.5)	0.79	0.40-1.53	0.48	0.83	0.43-1.62	0.59
TIMI major bleeding	21 (1.2)	289 (26.3)	0.04	0.03-0.06	< 0.001	0.04	0.03-0.06	<0.001
Moderate renal dysfunction (eGFR \geq 30 and	(eGFR ≥ 30 anc	1 <60)	2					
MACCE	50 (15.6)	37 (13.1)	1.35	0.88-2.07	0.17	1.26	0.82-1.93	0.30
Death	29 (9.1)	28 (9.9)	1.01	0.60-1.69	0.99	0.84	0.49-1.41	0.50
Myocardial infarction	3 (0.9)	0 (0)	I	ŗ	0.99	ı	ı	0.99
Any revascularization	14 (4.4)	4 (1.4)	3.58	1.18-10.88	0.02	3.73	1.23-11.34	0.02
Stroke	10 (3.1)	8 (2.8)	1.19	0.47-3.03	0.71	1.18	0.47-3.01	0.72
TIMI major bleeding	9 (2.8)	69 (24.5)	0.10	0.05-0.21	< 0.001	0.10	0.05-0.21	<0.001
				(
Disclaimer : As a public service to our readership, this article peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal	hip, this article peer revi , and not that of the journc	iewed by the Editors of ว1	Eurointerventi	on - has been published	immediately up	on acceptanc	e as it was received. Th	ie content of this

Supplemental Table 3. Sensitivity Analysis Excluding Patients With 1st Generation Drug-Eluting Stents

	CABG: coronary artery bypass grafting; CI: confidence interval; HR : hazard ratio; MACCE: major adverse cardiocerebrovascular event	TIMI major bleeding	Stroke	Any revascularization	Myocardial infarction	Death	MACCE
	grafting; Cl: conf	7 (6.9)	1 (1.0)	6 (5.9)	7 (6.9)	32 (31.4)	39 (38.2)
	idence interval;	20 (27.4)	3 (4.1)	7 (1.4)	1 (1.4)	17 (23.3)	18 (24.7)
-	HR : haz	0.24	0.29	6.19	6.65	1.70	2.10
	ard ratio; MACC	0.10-0.56	0.03-2.78	0.75-51.4	0.82-54.16	0.94-3.06	1.20-3.67
	E: major a	0.001	0.28	0.09	0.08	0.08	0.01
	dverse ca	0.22	0.26	6.26	6.65	1.30	1.74
	rdiocerebrovas	0.09-0.52	0.03-2.52	0.75-52.1	0.82-54.2	0.71-2.37	0.99-3.06
	cular event;	0.001	0.25	0.09	0.08	0.39	0.06

Severe renal dysfunction (eGFR <30)

PCI: percutaneous coronary intervention; TIMI: thrombolysis in myocardial infarction

*Multivariate analysis: Cox proportional hazards model with backward elimination method copyright

article is the sole responsibility of the authors, and not that of the journal Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this

••		-		
Mariable	PCI	CABG	P value	
Variable	(N=2825)	(N=1453)	P value	
Demographic and laboratory				
findings				
Age (years)	63.8±10.7	64.7±9.0	0.003	
Male sex	2185 (77.4)	1138 (78.3)	0.47	
BMI (kg/m2)	24.5±3.0	24.6±3.0	0.23	
Diabetes	966 (34.2)	616 (42.4)	<0.001	
Hypertension	1767 (62.5)	938 (64.6)	0.20	
Dyslipidemia	1834 (64.9)	793 (54.6)	< 0.001	
Current/recent smoker	686 (24.3)	384 (26.4)	0.13	
Prior myocardial infarction	210 (7.4)	192 (13.2)	< 0.001	
Prior CHF	62 (2.2)	49 (3.4)	0.02	
Prior PCI	481 (17)	190 (13.1)	0.001	
Atrial fibrillation/flutter	67 (2.4)	24 (1.7)	0.12	
Cerebrovascular disease	221 (7.8)	119 (8.2)	0.67	
PAD	106 (3.8)	113 (7.8)	< 0.001	
Chronic lung disease	67 (2.4)	51 (3.5)	0.03	
Dialysis	68 (2.4)	38 (2.6)	0.68	
HDL-C (mg/dL)	41 (34.8,48)	39 (33,46)	< 0.001	
LDL-C (mg/dL)	95 (71,120)	97 (72,123)	0.33	
CRP (mg/dL)	0.15 (0.06,0.5)	0.16 (0.07,0.485)	0.06	
Clinical diagnosis				
Stable angina	1237 (43.8)	490 (33.7)	<0.001	

Supplemental Table 4. Baseline Characteristics in the Overall Population with PCI and CABG

Acute coronary syndrome		1588 (56.2)	963 (66.3)		
Ba	aseline eGFR				
2)	eGFR (>60 <i>ml·min -1·1.73m</i> -	2289 (81)	1098 (75.6)	<0.001	
	eGFR (≥ 30 and <60)	419 (14.8)	282 (19.4)		
	eGFR (<30)	117 (4.1)	73 (5)		

Values are mean \pm SD or n (%).

BMI: body mass index; CHF: congestive heart failure; CRP: C-reactive protein; eGFR: estimated glomerular filtration rate; HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; PCI: percutaneous coronary intervention; PAD: peripheral artery disease

Variable	PCI	CABG	P value	
Variable	(N=2289)	(N=1098)	P value	
Demographic and laboratory				
findings				
Age (years)	62.3±10.5	63.6±8.9	<0.001	
Male sex	1787 (78.1)	870 (79.2)	0.44	
BMI (kg/m2)	24.6±3.0	24.7±3.0	0.34	
Diabetes	689 (30.1)	422 (38.4)	< 0.001	
Hypertension	1333 (58.2)	668 (60.8)	0.15	
Dyslipidemia	1499 (65.5)	613 (55.8)	< 0.001	
Current/recent smoker	578 (25.3)	312 (28.4)	0.05	
Prior myocardial infarction	153 (6.7)	142 (12.9)	< 0.001	
Prior CHF	29 (1.3)	22 (2)	0.10	
Prior PCI	369 (16.1)	137 (12.5)	0.005	
Atrial fibrillation/flutter	38 (1.7)	14 (1.3)	0.39	
Cerebrovascular disease	152 (6.6)	76 (6.9)	0.76	
PAD	63 (2.8)	71 (6.5)	< 0.001	
Chronic lung disease	54 (2.4)	38 (3.5)	0.07	
HDL-C (mg/dL)	42.9±13.2	41.2±15.2	< 0.001	
LDL-C (mg/dL)	99.7±40.4	101.2±37	0.21	
CRP (mg/dL)	0.6±1.4	0.6±1.4	0.08	
Clinical diagnosis				
Stable angina	1024 (44.7)	382 (34.8)	< 0.001	
Acute coronary syndrome	1265 (55.3)	716 (65.2)		

Supplemental Table 5. Baseline Characteristics in Patients with Preserved Renal Function

Values are mean ± SD or n (%).

BMI: body mass index; CHF: congestive heart failure; CRP: C-reactive protein; HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; PCI: percutaneous coronary intervention; PAD: peripheral artery disease

copyright EuroIntervention

Verieble	PCI	CABG	P value	
Variable	(N=419)	(N=282)	P value	
Demographic and laboratory				
findings				
Age (years)	70.4±9.5	68.7±8.3	0.01	
Male sex	312 (74.5)	218 (77.3)	0.39	
BMI (kg/m2)	24.6±3.0	24.7±3.2	0.72	
Diabetes	188 (44.9)	140 (49.6)	0.21	
Hypertension	322 (76.8)	203 (72)	0.15	
Dyslipidemia	264 (63)	145 (51.4)	0.002	
Current/recent smoker	91 (21.7)	58 (20.6)	0.72	
Prior myocardial infarction	44 (10.5)	41 (14.5)	0.11	
Prior CHF	19 (4.5)	19 (6.7)	0.21	
Prior PCI	87 (20.8)	39 (13.8)	0.02	
Atrial fibrillation/flutter	22 (5.3)	8 (2.8)	0.12	
Cerebrovascular disease	51 (12.2)	32 (11.3)	0.74	
PAD	32 (7.6)	35 (12.4)	0.04	
Chronic lung disease	10 (2.4)	8 (2.8)	0.71	
HDL-C (mg/dL)	40.8±11.5	38.6±9.8	0.05	
LDL-C (mg/dL)	93.3±33.7	95.4±39.9	0.66	
CRP (mg/dL)	0.9±1.7	0.7±1.4	0.68	
Clinical diagnosis				
Stable angina	174 (41.5)	88 (31.2)	0.006	
Acute coronary syndrome	245 (58.5)	194 (68.8)		

Supplemental Table 6. Baseline Characteristics in Patients with Moderate Renal Dysfunction

Values are mean ± SD or n (%).

BMI: body mass index; CHF: congestive heart failure; CRP: C-reactive protein; HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; PCI: percutaneous coronary intervention; PAD: peripheral artery disease

copyright EuroIntervention

		CABG	
Variable	(N=117)	(N=73)	P value
Demographic and laboratory	0	<u>}</u> `	
findings		16	
Age (years)	68.9±9.0	66.2±8.2	0.04
Male sex	86 (73.5)	50 (68.5)	0.46
BMI (kg/m2)	23.3±2.9	24±3.1	0.17
Diabetes	89 (76.1)	54 (74)	0.75
Hypertension	112 (95.7)	67 (91.8)	0.34
Dyslipidemia	71 (60.7)	35 (48)	0.09
Current/recent smoker	17 (14.5)	14 (19.2)	0.40
Prior myocardial infarction	13 (11.1)	9 (12.3)	0.80
Prior CHF	14 (12)	8 (11)	0.83
Prior PCI	25 (21.4)	14 (19.2)	0.72
Atrial fibrillation/flutter	7 (6)	2 (2.7)	0.49
Disclaimer : As a public service to our readership, this article peer reviewed by the Editors of EuroIntervention - has been published immediately upon acco	is article peer reviewed by th	e Editors of EuroInterventio	n - has been published immediately upon acc

Supplemental Table 7. Baseline Characteristics in Patients with Severe Renal Dysfunction

the sole responsibility of the authors, and not that of the journal cceptance as it was received. The content of this article is

Disclaimer : As a public service to our readership, this article p the sole responsibility of the authors, and not that of the journal	BMI: body mass index; CHF: congestive heart failure; CRP: C-reactive protein; HDL-C: high densit lipoprotein cholesterol; PCI: percutaneous coronary intervention; PAD: peripheral artery disease	Values are mean ± SD or n (%).	Acute coronary syndrome	Stable angina	Clinical diagnosis	CRP (mg/dL)	LDL-C (mg/dL)	HDL-C (mg/dL)	Dialysis	Chronic lung disease	PAD	Cerebrovascular disease
article peer reviewed by the he journal	ive heart tailure; CR neous coronary inte	· - -	78 (66.7)	39 (33.3)		1.4±1.9	87.4±32.9	41.7±52.8	64 (54.7)	3 (2.6)	11 (9.4)	18 (15.4)
Editors of EuroIntervention - has t	P: C-reactive protein; H rvention; PAD: periphe		53 (72.6)	20 (27.4))/(1.2±1.8	87.5±31.5	35.7±11	37 (50.7)	5 (6.8)	7 (9.6)	11 (15.1)
Disclaimer : As a public service to our readership, this article peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal	BMI: body mass index; CHF: congestive heart tailure; CRP: C-reactive protein; HDL-C: high density lipoprotein cholesterol; PCI: percutaneous coronary intervention; PAD: peripheral artery disease			0.39		0.52	0.80	0.81	0.59	0.26	0.97	0.95