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Abstract 

Aims. To develop a deep learning model for classifying frames with vs. without optical 

coherence tomography (OCT)-derived thin-cap fibroatheroma (TCFA). 

Methods and Results. Total 602 coronary lesions from 602 angina patients were 

randomized into training and test sets at a 4:1 ratio. A DenseNet model was developed 

to classify OCT frames with or without OCT-derived TCFA. Gradient-weighted class 

activation mapping was used to visualize the area of attention. In the training sample 

(35,678 frames of 480 lesions), the model with 5-fold cross-validation had an overall 

accuracy of 91.6±1.7%, sensitivity of 88.7±3.4%, and specificity of 91.8±2.0% 

(averaged AUC=0.96±0.01) in predicting the presence of TCFA. In the test samples 

(9,722 frames of 122 lesions), the overall accuracy at the frame level was 92.8% within 

the lesion (AUC=0.96) and 91.3% in the entire OCT pullback. The correlation between 

the %TCFA burdens per vessel predicted by the model compared with that identified by 

experts was significant (r=0.87, p<0.001). The region of attention was localized at the 

site of the thin cap in 93.4% of TCFA-containing frames. Total computational time per 

a pullback was 2.1 ± 0.3 seconds. 

Conclusion. Deep learning algorithm can accurately detect an OCT-TCFA with a high 

reproducibility. The time-saving computerized process may assist clinicians to easily 

recognize high-risk lesions and to make decisions in the catheterization laboratory. 

 

 

Classification: ACS/NSTE-ACS, Miscellaneous, plaque rupture, optical coherence 

tomography 
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Condensed abstract 

A deep learning algorithm was developed to classify OCT frames with or without OCT-

derived TCFA. The model showed the frame-level accuracy was 92.8% in the lesion 

(AUC=0.96) and 91.3% in the entire OCT pullback with 2.1 ± 0.3 seconds of a total 

computational time. Also, the model-predicted %TCFA burdens per vessel significantly 

correlated with that measured by experts (r=0.87, p<0.001). The region of attention was 

localized at the site of the thin cap in majority, which indicated that the model predicted 

TCFAs detecting a thin cap. The data-driven approach may assist clinicians in quickly 

assessing high-risk coronary lesions. 

 

Abbreviations 

TCFA= thin-cap fibroatheroma 

OCT= optical coherence tomography 

FCT= fibrous cap thickness 

DenseNet= densely connected convolutional networks 

ROC= receiver operating characteristic 

AUC= area under curve 

TP=true positive 

FP= false positive 

FN=false negative 

DSC= Dice similarity coefficient 

Grad-CAM= gradient-weighted class activation mapping 
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Introduction 

Thin-cap fibroatheroma (TCFA) is a precursor of plaque rupture with acute 

coronary thrombosis, and is characterized by an inflamed fibrous cap with a thickness < 

65 µm, a large necrotic core, and an infiltration of foamy macrophages.1-4 Previous 

studies on the natural history of deferred coronary lesions demonstrated that the 

presence of TCFA is an independent predictor of future adverse cardiac outcomes.5,6 

Moreover, TCFA-containing lesions were associated with a high risk of distal 

embolization and periprocedural myocardial infarction during percutaneous coronary 

intervention.7,8 However, the majority of previous studies have conducted only 

qualitative assessments of TCFA (i.e., the presence or absence of TCFA within the 

target vessel), which poorly represents the status of the whole length of the vessel. 

Currently, optical coherence tomography (OCT) is the only imaging modality 

with sufficient resolution (10–15 µm of spatial resolution) to measure fibrous cap 

thickness (FCT) and identify TCFA-containing lesions.9-11 Although studies of FCT 

measurement ex vivo showed a good interobserver agreement relative to histology, its 

reproducibility in vivo remains poor.12,13 Furthermore, the feature evaluated in the 

majority of these studies was not the extent of TCFA but rather the presence or absence 

of TCFA in any frame within a target vascular segment; this may not necessarily reflect 

the status of the entire vessel. Conversely, the quantification of TCFA by per-frame 

interpretation from whole OCT pullback is time consuming. Therefore, a standard 

interpretation algorithm is needed to reduce interobserver variation and the cost 

associated with OCT analysis. 

Deep learning approaches have recently become dominant in various computer 

vision tasks such as classification, detection, and segmentation.14-16 Convolutional 
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neural networks, which is a type of deep learning, is designed to automatically and 

adaptively ascertain the spatial hierarchies of features via backpropagation. This data-

driven approach can be applied to develop prediction models for medical imaging with 

excellent performance. Previous studies have developed deep learning algorithms for 

automatic OCT segmentation, tissue classification, and atheroma detection.17,18 

Although these studies highlighted the importance of the approaches for the accurate 

and rapid interpretation of OCT, their clinical implication was limited by the inclusion 

of only a small number of OCT cases, the suboptimal accuracies, and the lack of an 

algorithm to identify a TCFA. 

By using a larger OCT cohort (45,400 OCT frames in 602 coronary arteries), 

this current study was conducted to develop an end-to-end neural network model that 

can automatically classify frames with or without OCT-derived TCFA, as the prototype 

of vulnerable plaque. 

 

Methods 

Study population and data collection. Between May 2010 and May 2016, 6598 

consecutive patients with stable and unstable angina underwent invasive coronary 

angiography at Asan Medical Center, Seoul, South Korea. Pre-procedural OCT data 

were obtained in 798 patients at the discretion of the operators. All patients had at least 

one lesion with 30%–85% of angiographic stenosis. When multiple lesions were 

evaluated in one patient, the lesion with the highest degree of angiographic stenosis was 

selected. We excluded 171 stented lesions and 25 lesions because of poor imaging 

quality, and 602 coronary lesions from 602 patients were studied in total. Patients were 

randomly assigned into training (n = 480) or test (n = 122) sets at a ratio of 4:1. Per-
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patient randomization was conducted to avoid adjacent frames with similar 

characteristics from being enrolled into both the training and test sets. Furthermore, data 

from a nonoverlapping population of 65 consecutive patients (with unselected 65 OCT 

pullback images acquired from the St. Jude OCT system) who underwent pre-

procedural OCT between February 01, 2016, and November 30, 2017, were used for an 

additional validation study. 

Clinical information was supported by the Asan Biomedical Research 

Environment system. All patients provided written informed consent. This study was 

approved by the institutional review board of Asan Medical Center. 

After the intracoronary administration of 0.2 mg nitroglycerin, OCT images 

were acquired using a nonocclusive technique with the C7XR™ system and 

DragonFly™ catheters (LightLab Imaging, Inc.) at a pullback speed of 20 mm/s. A 

lesion was defined as the segment including frames with >0.5 mm maximal plaque 

thickness. When a vessel had multiple lesions, only one lesion containing the minimal 

lumen area site was selected and used for machine learning. After the exclusion of OCT 

frames at the branching sites, a total of 45,400 OCT frames (training set: 35,678 frames 

in 480 patients, test set: 9,722 frames in 122 patients) were included in the final model. 

Material and Methods. Each OCT frame had a 0.4 mm interval and was labeled 

according to the presence or absence of TCFA. We defined OCT-derived TCFA as an 

OCT-delineated necrotic core with an angle ≥ 90° and an overlying FCT < 65 μm at the 

thinnest part to be the histologically defined threshold for detection.1-4 Supplementary 

appendix summarizes the definitions of OCT findings and Supplemental Fig 1 provides 

the examples. All OCT images were analyzed by two independent investigators who 

were blinded to the information of the patients. In the event of discordance between the 
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readers, an assessment was obtained from a third independent investigator to determine 

a consensus. In the independent cohort including 65 OCT pullbacks, intra- and inter-

observer variability between two independent observers (P.L. and S.L.) was evaluated to 

separate the frames with vs. without TCFA. The intra- and inter-observer and variability 

was assessed by kappa statistical analysis that corrected for the chance of simple 

agreement and accounted for systematic observer bias; a kappa > 0.80 indicated good 

agreement, and a kappa between 0.61 and 0.80 indicated moderate agreement. S.K, a 

cardiologist, reviewed annotated images, and supervised the whole steps of data 

preparation. 

Supplementary appendix describes the densely connected convolutional 

networks (DenseNet)19 and the used hyperparameters. The balanced amount of images 

with vs. without TCFA were randomly selected and used to train the model for each 

epoch. In the given number of TCFA-containing images, various augmentation 

techniques were utilized (Supplementary appendix). 

Because a guiding catheter tip in the ostium may lead to a false diagnosis of 

TCFA at the proximal end of OCT image, we additionally conducted post-tuning of the 

model in separate 100 patients with 2590 OCT frames showing a guiding catheter to 

discriminate a TCFA-mimicking catheter from the ground truth. 

The receiver operating characteristic (ROC) curve was based on the relative 

performance with consideration to the whole range of possible probability thresholds 

(from 0 to 1) and had an area ranging from “0.5” for classifiers without any prediction 

capability to “1” for perfectly classifying algorithms. Furthermore, a 5-fold cross-

validation was used in each training process to flag overfitting (Supplementary 

appendix). The averaged performances were shown as mean ± standard deviations. 
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After the completion of cross-validation, the model was re-trained on the whole training 

dataset for a final prediction. The trained deep learning model provides a continuous 

number between zero and one for a referable classification of TCFA presence. The 

ROCs were plotted by varying the operating threshold, and the operating point with the 

largest area under a curve (AUC) value was selected. Fig. 1 shows the overall flow chart 

for the development of the deep learning model. The diagnostic performances at the 

frame level were assessed within the lesion and in the entire frames of an OCT pullback. 

With a batch size of 256, total computational time for analyzing an OCT pullback was 

calculated as the sum of data loading and inference time. 

To evaluate the performance at the vessel level, percent-TCFA burden was 

calculated as the percentage of TCFA-containing frames in the total OCT frames within 

a vessel. Considering the potential clustering effect of multiple frames per vessel on the 

classification, the normalized diagnostic performances were calculated as the averages 

of the frame-level performances in each vessel (averaged sensitivity, averaged 

specificity and averaged overall accuracy). In addition, the performances in randomly 

selected 122 frames (including one frame per patient) in 122 test samples were 

calculated, and then the averaged performances of the independent 20 runs were shown 

as mean ±standard deviations. 

To assess how much were overlapping between the predicted vs. the ground-

truth TCFA frames in the test set, by using the definitions of true positive (TP), false 

positive (TP) and false negative (FN), Dice similarity coefficient (DSC) was calculated 

as 2TP / (2TP + FP + FN). 

Gradient-weighted class activation mapping (Grad-CAM) was applied to the 

overall OCT frames that were classified as positive TCFA (supplementary appendix). 
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Ultimately, this process helped to clarify if the developed models utilized the 

histologically defined key features of TCFA (thin-cap overlying necrotic core) as the 

main target for detection. 

 

Results 

Clinical and lesion characteristics. Table 1 shows a summary of the clinical 

characteristics of patients and quantitative coronary angiographic data. The overall 

frequency of OCT-defined TCFA in our sample was 7.3%. In the training sample 

(including 480 lesions with 35,678 frames), TCFA was detected in 2,577 (7.2%) frames. 

In the test sample (including 122 lesions with 9,722 frames), 717 (7.4%) frames had a 

TCFA. For the diagnosis of TCFA, intra- and inter-observer variability yielded 

moderate concordance (kappa =0.78 and kappa =0.74, respectively). 

Deep learning prediction of TCFA. Table 2 summarizes the frame-level performance 

in terms of classifying frames averaged performances TCFA. The AUCs based on ROC 

analyses are also shown in Fig. 2. In the training samples, the deep learning model with 

5-fold cross-validation showed an overall accuracy of 91.6 ± 1.7%, a sensitivity of 88.7 

± 3.4%, and a specificity of 91.8 ± 2.0% within the lesion (AUC 0.96 ± 0.01). In the test 

samples, the overall accuracy was 92.8% (AUC 0.96) within the lesion and 91.3% 

(AUC 0.96) in the entire pullback images (Table 2). 

When the normalized diagnostic performances in vessel unit were assessed by 

averaging the frame-level performances for each vessel, the averaged sensitivity was 

94.5±14.6%, the averaged specificity was 92.8±9.2%, and the averaged overall accuracy 

was 92.9±7.9%. In addition, the independent 20 runs by random sampling of one frame 

per patient in the 122 test samples showed the averaged sensitivity of 88.4±12.9%, the 
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averaged specificity of 93.7±1.9%, and the averaged accuracy of 93.3±1.9%. 

Supplemental Table 1 shows a summary of frame-level performances based on 

the precision-recall curves of the training and test sets. In the test set, DSC between the 

predicted and the ground-truth TCFA frames was 0.73. 

Among 112 TCFA lesions with at least two consecutive TCFA-containing 

frames, 103 (92.0%) were truly classified as ‘positive’ by the model. The length of the 

TCFA lesions classified as ‘positive’ (vs. ‘negative’) was significantly longer (6.8±6.7 

frames vs. 2.0± 0.7 frames, p<0.001). 

Fig. 3 shows the vessel-level performances in the test set. The predicted number 

of TCFA-containing frames within a vessel by the model was significantly correlated 

with the expert estimation (r = 0.88, p < 0.001). Furthermore, there was a significant 

correlation between percent-TCFA burdens per vessel as predicted by the model vs. by 

experts (r = 0.87, p < 0.001). 

In the non-overlapping cohort including 65 OCT pullback images, the frame-

level performances were tested in the entire pullback images. To classify frames with vs. 

without TCFA, the sensitivity, the specificity and the overall accuracy were 93.9%, 

89.7% and 89.9%, respectively (AUC 0.97, Supplemental Table 2). In addition, the total 

computational time per an OCT pullback (including 344.1±76.2 frames) was 2.1 ± 0.3 

seconds, which was much shorter as compared to the expert’s interpretation (vs. 288.9 ± 

269.9 seconds, p<0.001). 

Regions of attention. In the test set, the localization maps were generated by Grad-

CAM to demonstrate the regions of attention for predicting a TCFA (Fig. 4). In the 

region of attention, the red-coded area (>0.8) was localized at the site of the thin cap in 

593 (93.4%) of the 635 frames that were assessed truly positive for TCFA by the model. 
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False positive diagnosis. In the test set, 616 frames were misclassified as a TCFA 

(false positive) and were subsequently reviewed by experts to identify the reasons. In 

93.4% of those misclassified frames, the red-coded area was localized at a region 

mimicking a thin cap but was not determined as a TCFA because of the following 

reasons (Fig. 5): 1) the presence of fibrous tissue overlying calcification with an 

invisible abluminal border in 152 (24.6%) frames, 2) superficial infiltration of 

macrophages or microcalcification with back scattering in 108 (17.6%) frames, 3) a 

relatively thin fibrous cap that was not thin enough to meet the histological threshold of 

65 µm in 106 (17.1%) frames, 4) an arc of signal-poor necrotic core less than 90° in 92 

(14.9%) frames, 5) tangential signal loss caused by an eccentric catheter position or 

sidebranch opening in 71 (11.6%) frames, 6) a thin intimal layer facing the media of a 

normal vascular segment in 42 (6.8%) frames, 7) structures mimicking a TCFA caused 

by various artifacts including nonuniform rotational distortion and guide wire artifact in 

41 (6.7%) frames, and 8) a signal-rich luminal border of red thrombus in 4 (0.7%) 

frames. 

In Fig 3, 38 of 69 (55%) vessels without TCFA were misclassified as TCFA-

containing vessels by the model. Among those with false positive diagnosis, 15 (40%) 

vessels did not have TCFAs that were detected at two or more consecutive frames. The 

predicted number of TCFA-containing frames within a vessel by the model was 

significantly correlated with the expert estimation (r = 0.88, p < 0.001, Fig. 3). 

Furthermore, there was a significant correlation between percent-TCFA burdens per 

vessel as predicted by the model vs. by experts (r = 0.87, p < 0.001). 

False negative diagnosis. In the test set, 82 frames were misclassified as non-TCFA 

(false negative) and were also reviewed by experts. Among the misclassified frames, 64 
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(78%) frames were located adjacent to a TCFA-containing frame, thus suggesting that 

the false negative diagnosis frequently occurred at the transition zone between the 

frames with and without a TCFA. 

 

Discussion 

We aimed to determine if a deep learning model could accurately predict the presence 

of a TCFA in OCT images. The main findings of the current study are as follows: 1) In 

the test samples, the overall accuracy for predicting a TCFA was 92.8% within the 

lesion and 91.3% in the entire pullback. 3) In the frames that are classified as TCFA, the 

activated map was localized at the site of the thin fibrous cap overlying the necrotic core 

in the majority. 

Near-infrared light-based OCT has been the gold standard for the in vivo 

detection of TCFA because of the high spatial resolution and strong contrast between 

the lumen and vessel wall.9-11 An ex vivo study reported a high level of inter-observer 

agreement between OCT- and histologically measured FCT. Conversely, the intra-class 

correlation coefficient for the in vivo measurement of FCT by OCT ranges from 0.48–

0.56,12-14 mainly because of the uncertainly in defining the necrotic core facing the 

border of the fibrous cap and macrophage infiltration, as well as imaging artifacts and 

other OCT features that may mimic a TCFA. Moreover, the quantification of TCFA by 

per-frame interpretation from a whole OCT pullback is time consuming. In this current 

study, inter-observer variability yielded moderate concordance (kappa =0.74), while the 

ML model consistently separated a TCFA vs. non-TCFA within only a few seconds per 

a whole pullback. Therefore, the development of an automatic algorithm based on 

standardized interpretation protocols is needed to reduce inter-observer variation and the 
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cost associated with OCT analysis. 

Convolutional neural network is a category of deep neural networks, in which 

the connectivity pattern between neurons resembles the organization of the human 

visual cortex for recognizing patterns. By hierarchical processing with convolutional 

layers, the various activations of one neuronal layer is passed to the next layer, which 

allows the neural network to assemble more complex, higher level features. Several 

studies have proposed the automatic algorithms for OCT segmentation and plaque 

characterization. Rico-Jimenez et al. developed a computational method for automated 

atherosclerotic plaque characterization in 57 OCT cases.20 To classify the OCT B-scans 

as the plaques with vs. without lipid, the overall accuracy was 85%. More recently, 

Abdolmanafi et al. developed a convolutional neural network that includes 26 OCT 

pullbacks to automatically classify the intima vs. medial layer of the coronary artery 

with an accuracy of 96%.17 Gessert et al. also showed that convolutional neural 

networks trained on 49 patients identified atherosclerotic plaques with an accuracy of 

91.7%.18 However, the previous studies including only a small number of OCT did not 

predict the presence of TCFA, a prototype of vulnerable plaques. 

Our deep learning model using 602 OCT cases quickly identified TCFA-

containing frames in the entire pullback images, with a frame-level accuracy of 91.3%. 

Although deep learning is considered a “black box,” the gradient-based Grad-CAM 

analysis provided a class-discriminative visualization map that highlighted a target 

region for prediction. The red-coded activation maps were localized to the thin-cap 

overlying lipid core in majority, thus indicating that this model could identify TCFA-

containing lesions with good performance and with reasonable explanation. 

This current model showed a negative predictive value of 99.0% for predicting a 
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TCFA-containing frames, but the positive predictive value (PPV) was only 50.8%. The 

false-positive cases were frequently associated with a signal-rich collagen band 

overlying a calcification with a poorly delineated abluminal border or a superficial 

radial shadowing caused by scattering macrophages or microcalcification. Considering 

that these findings mimicked a thin fibrous cap, it is sometimes a challenge even for 

clinicians to discriminate these features from a TCFA. In the setting of an eccentric 

catheter position or sidebranch opening, tangential signal dropout (as an imaging 

artifact that occurs when the light beam strikes the tissue under a glancing angle and 

travels almost parallel to the vessel wall) led to a misclassification of a stable plaque as 

a TCFA.13 Therefore, to improve the PPV, the model needs to be further trained on 

prespecified subgroups of a larger cohort with the known OCT characteristics of 

calcification, macrophage infiltration, tangential signal drop, various extents of necrotic 

core, red thrombus, and imaging artifacts. Moreover, given that the expert’s decision 

was affected by the contextual findings of the adjacent frames and the corresponding 

frame, training the deep learning model by using additional features obtained from 

adjacent frames may further improve the diagnostic performance. 

Limitations. Given the low incidence of TCFA, the class imbalance may have affected 

the high rate of false positive diagnosis. Although the algorithm replicated the expert 

classification, the optimal threshold of OCT-measured cap thickness and the angular 

extent of TCFA still remain ambiguous. With a lack of external validation, the model 

requires studies of histological and clinical validation. Because the possibility of 

overfitting cannot be completely excluded, the model performances should be validated 

in a large prospective cohort. Although the normalized diagnostic performance and the 

averaged accuracy of 20 runs with one frame per patient were shown to be consistently 
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good, there may be a potential clustering effect of multiple frames per vessel. 

Conclusion. Deep learning algorithm can accurately detect an OCT-TCFA with a high 

reproducibility. The time-saving computerized process may assist clinicians to easily 

recognize high-risk lesions and to make decisions in the catheterization laboratory. 

 

 

Impact on daily practice 

- Deep learning algorithms can accurately identify the presence of a TCFA by 

detecting a thin cap. 

- With an excellent per-frame and per-vessel performances, the model classified the 

lesions with and without TCFA in the entire pullback within a few seconds. 

- This data-driven approach may assist clinicians to quickly recognize the high-risk 

coronary lesions. 

-  
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Figure legends 

Central illustration. Deep learning to classify the frames with vs. without OCT-TCFA. 

 

Figure. 1. Flow chart of machine learning. TCFA=thin-cap fibroatheroma. 

 

Figure. 2. ROC analysis. A: area under curves in the training set with 5-fold cross 

validation. B: area under curve in the test set. 

 

Figure. 3. Vessel-level performances. A: The number of TCFA-containing frames per 

vessel as predicted by the model was significantly related to the expert-measured values. 

B. There was a significant correlation between the model-predicted %TCFA burden vs. 

expert- measured %TCFA burden. 

 

Figure. 4. Activation maps using Grad-CAM technique. Two examples of TCFA-

containing frames that were truly classified as a “TCFA” by the model. A. The red-

coded area was localized at the site of the thin cap (white arrows) overlying the necrotic 

core (*). B. At the 10 o’clock direction, the red-coded area was localized at the region of 

the thin cap (white arrows) overlying the necrotic core (*). Conversely, at the 3–7 

o’clock direction, a red-coded area was not seen. Although the red arrows indicate a 

signal-rich band that mimicked a thin cap, it overlies calcification and not a necrotic 

core. The white arrow heads clarify the abluminal border of calcification. 

 

Figure. 5. Reasons for false-positive diagnosis. A. The red-coded area was localized to 

the fibrous tissue (arrow) overlying calcification with an invisible abluminal border 
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(arrow head). The presence of calcium was confirmed by experts reviewing the adjacent 

frames with a clear abluminal border. B. Superficial infiltration of macrophages (arrow) 

mimicked a thin cap but was associated with back scattering (arrow head) C. The 

thickness of the fibrous cap (arrows) was relatively thin but was less than 65 µm. D. 

Although the FCT (arrow) was 60 µm, the arc of the signal-poor necrotic core was less 

than 90°. E–F. The red-coded area was localized at the site of the tangential signal loss 

(arrows) caused by eccentric catheter position (E) and sidebranch opening (F). G. A thin 

intimal layer (arrows) facing the media (arrow heads) of a normal vascular segment 

mimicked a thin cap. H. The red-coded area was seen on the signal-rich surface of the 

guide wire (arrow). I. This near-normal segment was misclassified as TCFA by 

nonuniform rotational distortion as an imaging artifact. J. The red-coded area was 

localized on the signal-rich luminal surface of red thrombus (arrow). 
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Table 1. Baseline characteristics in 602 patients with 602 coronary lesions 

Clinical data  

Age, years 65.5±9.7 

Men 451 (75%) 

Diabetes mellitus 168 (28%) 

Hypertension 367 (61%) 

Current smoker 276 (46%) 

Hyperlipidemia 343 (57%) 

Acute coronary syndrome 162 (27%) 

Quantitative angiographic data  

Involved vessel  

Left anterior descending artery lesion 331 (55%) 

Left circumflex artery lesion 144 (24%) 

Right coronary artery lesion 187 (31%) 

Diameter stenosis, % 51.9±12.8 

Minimal lumen diameter, mm 1.6±0.5 

Lesion length, mm 17.5±10.4 

Proximal reference lumen diameter, mm 3.4±0.5 

Distal reference lumen diameter, mm 2.9±0.7 
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Table 2. Frame-level performances based on ROC analyses to predict the presence of TCFA 

 AUC# Sensitivity (recall) Specificity PPV (precision) NPV Overall accuracy 

Training sample (5-fold CV)       

Group 1 0.962 88.3% 93.3% 51.4% 99.0% 93.0% 

Group 2 0.951 85.6% 91.3% 43.8% 98.8% 90.8% 

Group 3 0.967 85.4% 94.5% 55.2% 98.8% 93.8% 

Group 4 0.971 90.7% 90.6% 43.4% 99.2% 90.6% 

Group 5 0.966 93.3% 89.5% 41.5% 99.4% 89.8% 

Averages in 5 groups* 0.963±0.008 88.7±3.4% 91.8±2.0% 47.1±5.9% 99.0±0.3% 91.6±1.7% 

Test sample 0.962 88.6% 93.2% 50.8% 99.0% 92.8% 

CV=cross-validation, PPV=positive predictive value, NPV=negative predictive value 

# area under the curves based on the receiver operating characteristic (ROC) analysis 

*Average of 5-fold cross-validation in the training sample 
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SUPPLEMENTAL MATERIAL 

 

Definitions of OCT findings. 

Although both the necrotic core and calcification were characterized by a signal-poor 

region, they were discriminated by the diffuse vs. sharp margins of the signal-poor area, 

respectively. Macrophage accumulation was defined as a signal-rich punctate region 

with tail shadows in the deeper layer behind the superficial band of macrophages. When 

the abluminal border of the signal-poor region was unclear, a series of adjacent frames 

was carefully reviewed. Supplemental Fig 1 shows the examples of the OCT finding. 

All OCT images were analyzed by two independent investigators who were blinded to 

the information of the patients. In the event of discordance between the readers, an 

assessment was obtained from a third independent investigator to determine a consensus. 

 

5-fold cross validation. 

Cross-validation is a model validation techniques for assessing how the results of an 

analysis will generalize to an independent data set. It is commonly used in applied 

machine learning to compare and select a model for a given predictive modeling 

problem. In K Fold cross validation, the data is divided into k subsets and train the 

model on k-1 subsets and hold the last one for test. This process is repeated k times, 

such that each time, one of the k subsets is used as the test set/validation set and the 

other k-1 subsets are put together to form a training set. In the current study, 5-fold 

cross validation scheme divided the training sample into non-overlapped five partitions. 

Each partition was rotated to be the test set and the rests are used as training data. The 
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accuracy was calculated by averaging the accuracies over five tests. 

 

Deep learning model. 

Convolutional neural networks are composed of multiple building blocks such as 

convolution layers, pooling layers, and fully connected layers and are designed to 

automatically and adaptively learn the spatial hierarchies of features by using a 

backpropagation algorithm. We used the densely connected convolutional networks 

(DenseNet) model, which connects each layer to every other layer in a feed-forward 

fashion. To discriminate OCT frames without or with TCFA, all layers of the DenseNet 

model were fine-tuned by backpropagation via the whole net. Binary cross entropy with 

logits loss was used for loss function to optimize the prediction model. Furthermore, an 

Adam optimizer was applied with an initial learning rate of 0.0002. Considering the 

possibility of overfitting in the given number of TCFA-containing images, various 

augmentation techniques such as crop, random rotation, elastic transformation, 

horizontal and vertical flip, and use of Gaussian filters were utilized. 

 

Grad-CAM 

To support visual explanations for predicting the presence or absence of TCFA via deep 

learning-based models, we used gradient-weighted class activation mapping (Grad-

CAM), which is a recently proposed network visualization technique. By utilizing the 

gradients to estimate the importance of the spatial locations of convolutional layers, 

Grad-CAM produced a localization map that highlighted the attended regions on the 

OCT image to predict TCFA. The threshold > 0.8 (coded as red) was considered to be 

the key area of attention. 
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Supplemental Table 1. Frame-level performances based on the precision-recall 

curves to predict a TCFA 

 AUC Sensitivity 
(recall) Specificity PPV 

(precision) NPV Overall 
accuracy 

Training set with 5-fold 

CV  

     

Group 1 0.78 0.73 0.98 0.72 0.98 0.95 

Group 2 0.72 0.65 0.98 0.70 0.97 0.95 

Group 3 0.78 0.78 0.97 0.64 0.98 0.95 

Group 4 0.73 0.66 0.98 0.75 0.97 0.96 

Group 5 0.74 0.71 0.97 0.65 0.98 0.95 

Averages in 5 

groups* 

0.75 ± 
0.03 

0.70±0.05 0.97± 0.01 0.69± 0.04 0.98±0.01 0.95± 
0.01 

Test set 0.80 0.71 0.98 0.75 0.98 0.96 

AUC=area under the curve, CV=cross-validation, PPV=positive predictive value, 

NPV=negative predictive value 

*Average of 5-fold cross-validation in the training samples 
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Supplemental Table 2. Frame-level performances in the non-overlapping cohort 

including 65 OCT pullback images 

 AUC Sensitivity Specificity PPV NPV Overall 
accuracy 

ROC-based analyses 0.97 0.94 0.90 0.28 0.99 0.90 

Precision-recall curve-

based analyses 
0.65 0.79 0.96 0.48 0.99 0.96 

AUC=area under the curve, CV=cross-validation, PPV=positive predictive value, 

NPV=negative predictive value 

*Average of 5-fold cross-validation in the training sample 
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