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Introduction
In clinical research, we often examine continuous variables such as 
blood pressure, ejection fraction, laboratory values (e.g., choles-
terol), and angiographic variables (e.g., percent stenosis). We may, 
for example, want to compare these measurements between differ-
ent patients or between different time points. To compare continu-
ous data, parametric or non-parametric tests of significance may be 
applied. Which of these tests is appropriate depends on several fac-
tors, including the nature of the data to be analysed. These data 
should meet the assumptions that are required for the particular test. 
This paper describes parametric methods and the circumstances 
under which these methods are appropriate. Its aim is to give a gen-
eral overview, without claiming completeness; hence, exceptions 
are possible in specific situations.

Basic considerations
DISTRIBUTION OF DATA
When continuous (i.e., interval or ratio) data are organised and 
graphed as a histogram, they take on a shape referred to as a distri-
bution1. The most common distribution is the normal curve, which 
is symmetric and has a shape that resembles a bell (Figure 1). 
However, a distribution may also be skewed, i.e., not symmetric2. 
For example, a distribution can be positively skewed when most of 
the measurements occur at the lower end of the distribution.

MEAN AND MEDIAN
The arithmetic mean is the sum of all values, divided by the number 
of values. The median is the value that divides the distribution in 
half, i.e., if the observations are arranged in increasing order, the 
median is the middle observation2. Thus, half of the observations 
are above the median and half are below it. If there is an even 

Figure 1. Histogram and normal distribution.

number of observations, there is no middle one and the average of 
the two “middle” ones is taken. To summarise a variable, it is usu-
ally recommended that, when a variable follows a normal distribu-
tion, the mean and standard deviation (SD) should be reported. 
When a variable does not follow a normal distribution, the mean 
may be unrepresentative of the majority of the data2. In that case, 
the median and range (e.g., 25th and 75th percentile) should be 
reported instead. Furthermore, since the mean is very sensitive to 
outliers, to which the median is more robust, it is preferable to 
report the median and range when the distribution shows extreme 
cases, despite being expected to be normal.

STATISTICAL SIGNIFICANCE
In short, hypothesis testing is based on the following. The null 
hypothesis states that there is no difference between the study groups; 
for example, it states that mean blood pressure is the same in group 1 
and group 2, or that blood pressure is the same before receiving 
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medication and after receiving medication. The null hypothesis can 
be true or false. Statistical tests determine the probability that the null 
hypothesis is erroneously rejected; this probability is called a p-value 
(or “alpha level”)1. The smaller the p-value, the stronger is the evi-
dence against the null hypothesis. The cut-off point of the p-value is 
usually set at 0.05 and is called the significance level. There are 
numerous statistical tests available; in this paper we focus on two 
commonly used parametric tests.

Choosing between parametric and non-parametric 
methods
Parametric methods are appropriate when data are measured on the 
interval or ratio scale and when they are distributed normally. 
Normality of the data may be examined by visual examination of his-
tograms, box plots or Q-Q plots and by performing tests of normality 
such as the Kolmogorov-Smirnov test or the Shapiro-Wilk test3. If 
the data are not distributed normally, non-parametric statistical meth-
ods are appropriate4. Non-parametric methods are also more appro-
priate when one is dealing with small samples, since in such cases it 
is often difficult to assess the normality of the distribution of the 
data5, and the influence of extreme data points on the mean is larger.

Parametric tests are typically more powerful than non-parametric 
tests, meaning that if a difference between the study groups truly 
exists, that difference is more likely to be found using the parametric 
test4. However, because not all data are normally distributed or meas-
ured on an interval or ratio scale, in some cases only non-parametric 
methods can be applied.

Parametric tests
T-TEST
The t-test, also called Student’s t-test, is one of the most commonly 
used methods in clinical research6. It is a parametric method that is 
based on the means and SDs or variances of the data4. There are sev-
eral assumptions for using the t-test: the sample data must be derived 
from a normally distributed population; for two sample tests, the two 
populations must have equal variances; and each measurement (or 
the difference score for dependent data) must be independent of all 
other measurements1,3. In case the assumption of equal variances is 
not fulfilled, Welch’s t-test may be used as described elsewhere7.

Several types of t-test exist3,4,6,7. The one-sample t-test is applied 
when one study group is examined and may be used to compare the 
group mean to a theoretical mean. The paired t-test is used to esti-
mate whether the means of two related sets of measurements are 
significantly different from one another. This test is used when 
measurements are dependent because they are collected a) from the 
same participant at different times, b) from different sites on the 
same person at the same time, or c) from cases and their matched 
controls3. When two study groups are examined and the measure-
ments performed in the groups are independent (which, for exam-
ple, applies to an [unmatched] control versus experimental group 
design), an independent two-sample t-test is appropriate.

When a group mean is compared to a theoretical mean (one-sam-
ple t-test), the null hypothesis states that the group mean is equal to 

X is the observed mean
µo is the hypothesised value of the mean
SE is the standard error
SD is the standard deviation
n is the number of subjects

X1 is the observed mean in group 1
X2 is the observed mean in group 2
n1 is the number of subjects in group 1
n2 is the number of subjects in group 2
SDp is the pooled standard deviation

(3) Independent two-sample t-test:

(1) One-sample t-test:

(2) Paired t-test for the mean difference: d is the mean difference
SDd is the SD of the mean difference

Figure 2. t-test: calculation of t.

this theoretical mean. The t-statistic is calculated as the difference 
between the group mean and the hypothesised value of the group 
mean, divided by the standard error (SE) of the mean (Figure 2, equa-
tion 1)6. The SE may be substituted by the SD divided by the square 
root of the number of subjects (equation 1). For example, suppose 
that in a certain medical centre mean systolic blood pressure in 
patients treated for stable angina pectoris is 124 mmHg. We want to 
test whether the mean systolic blood pressure in patients with stable 
angina in our own centre is different from our hypothesised value of 
124 mmHg. Our study population consists of 100 patients. Suppose 
that we measure a mean systolic blood pressure of 132 mmHg with 
an SD of 23 mmHg in our study population. In this case, t is equal to 
(132-124)/(23/√100)=3.48. The accompanying p-value, as derived 
from a table of critical values for t, is <0.001. Thus, we conclude that 
the null hypothesis (“mean systolic blood pressure in our study popu-
lation is equal to 124 mmHg”) may be rejected at the 0.05 level (and 
in this case even at the 0.001 level). These results can also be easily 
obtained from statistical software programmes.

To compare the means of two dependent sets of measurements, 
such as repeated measurements performed on patients from one sin-
gle group, a paired t-test is used. Suppose we want to test in our study 
population of 100 patients with stable angina whether the mean sys-
tolic blood pressure before receiving certain medication is the same 
as that after receiving the medication. In this case, t is calculated as 
the mean difference between the measurements at the two time 
points, divided by the SE of this difference (Figure 2, equation 2)6. 
Again, the SE may be substituted by the SD (in this case, the SD of 
the mean difference), divided by the square root of the number of 
subjects. It should be noted that the SD of the mean difference is not 
merely a combination of the SDs of the means at the two time points, 
but is calculated from the total number of mean differences. Suppose 
that in our data we find a mean difference in systolic blood pressure 
of 5 mmHg with an SD of 4 mmHg. Consequently, t is equal to 5 / 
(4/√100)=12.5. Once more, this renders a p-value <0.001.

To compare the means of two independent sets of measurements 
(independent two-sample t-test), t is calculated as the difference between 
the two group means divided by the SE of this difference (Figure 2, 
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t-test and ANOVA

equation 3)6. The SE of the difference can be calculated from the pooled 
SD and the numbers of subjects of both groups, as depicted in equation 
3. The pooled SD, for its part, can be calculated from the SDs of each of 
the groups and the number of subjects of both groups (Figure 2). 
Suppose we want to investigate whether in our study population of 100 
patients with stable angina systolic blood pressure in men is the same as 
systolic blood pressure in women. Suppose there are 30 women with a 
mean systolic blood pressure of 134 mmHg, and 70 men with a mean 
systolic blood pressure of 131 mmHg, and the pooled SD is 24 mmHg. 
The SE of the difference then equals 24* √(1/30+1/70)=5.2. Thus, 
t=(134 –131/5.2)=0.58, and the accompanying p-value is >0.5. We con-
clude that the null hypothesis may not be rejected at the 0.05 level.

ANOVA
When more than two groups are compared using multiple t-tests, the 
probability of rejecting a true null hypothesis is increased as the num-
ber of comparisons made using independent t-tests increases4. Analysis 
of variance (ANOVA) is the appropriate statistical method to test for 
differences among three or more groups3. The assumptions for ANOVA 
are similar to those for the t-test (i.e., normal distribution; equal vari-
ances; each measurement independent of all other measurements)3,4,6.

The general theory behind the calculations of ANOVA is based on 
the following. ANOVA considers the variation in all observations and 
divides it into: a) the variation between each subject and the subject’s 
group mean, and b) the variation between each group mean and the 
grand mean6. If the group means are quite different from one another, 
considerable variation will occur between them and the grand mean, 
compared with the variation within each group. If the group means 
are not very different, the variation between them and the grand mean 
will not be much more than the variation among the subjects within 
each group6. The concept of ANOVA can be thought of as an exten-
sion of a two-sample t-test but the terminology used is different3. Just 
as the t-test uses calculation of a t-statistic, ANOVA uses calculation 
of an F-ratio. This F-ratio is defined as (between-groups variance) / 
(within-group variance), and indicates whether the variability 
between the groups is large enough compared to the variability of 
data within each group to justify the conclusion that two or more of 
the groups differ3,4,6. If an ANOVA was being used instead of the 
t-test to compare two groups, it would be found that F=t2 for these 
data4. After obtaining the F-ratio, it may be compared to the critical 
F-ratio in order to find the p-value. In our example of patients with 
stable angina, we would apply ANOVA if, for example, we wanted to 
test whether systolic blood pressure is the same for current smokers, 
former smokers and those who have never smoked.

For related measurements, for example blood pressure assessed 
at three or more time points in the same patients, repeated measures 
ANOVA may be used3. Repeated measures ANOVA can be consid-
ered as an extension of the paired t-test. A detailed description of 
repeated measures ANOVA is beyond the scope of this article.

Conclusions
Parametric methods are used for comparison of continuous data and 
include the t-test, which is appropriate when the experimental 

I.  Assumptions required for all t-tests (1 or 2 groups):
 The outcome variable must be continuous

 The outcome variable should approach a normal distribution in each group

 For two-sample tests, the population variance should be the same for both groups 
(variance is SD2)

 Assumptions which apply specifically to the paired t-test:
 The differences between the pairs of measurements should approach a normal 

distribution

 Assumptions which apply specifically to the independent two-sample t-test:
 The groups must be independent, i.e., a subject may only be part of one group

 The measurements must be independent, i.e., the subject’s measurement can be 
included only once

II. Assumptions required for ANOVA (3 or more groups):
 The outcome variable must be continuous

 The outcome variable should approach a normal distribution in each group

 The population variance should be the same for all groups

 The value of one measurement is not related in any way to the value of another 
measurement

Figure 3. Assumptions for t-test and ANOVA.

design consists of one or two sample groups, and ANOVA, which 
may be used when there are three or more groups to compare. The 
data being analysed should meet the assumptions which apply to 
the given test. These assumptions are summarised in Figure 3.

Other parametric methods for analysing continuous data, includ-
ing linear regression, as well as non-parametric methods, will be 
described in future papers within the current series. Moreover, excel-
lent references on these topics are provided by Bland and Altman5,8.
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