Title: Stroke after MitraClip: Systematic Review and Meta-Analysis.

Authors: Patrícia Barros da Silva, MB; José P. Sousa, M.D; Bárbara Oliveira, PhD; Helena Donato, MLS; Marco Costa, M.D; Lino Gonçalves, M.D, PhD; Rogério Teixeira, M.D, PhD

DOI: 10.4244/EIJ-D-19-00602

Manuscript submission date: 26 June 2019

Revisions received: 26 September 2019, 28 October 2019, 25 November 2019

Accepted date: 04 December 2019

Disclaimer: This is a PDF file of a "Just accepted article". This PDF has been published online early without copy editing/typesetting as a service to the Journal's readership (having early access to this data). Copy editing/typesetting will commence shortly. Unforeseen errors may arise during the proofing process and as such Europa Digital & Publishing exercise their legal rights concerning these potential circumstances.
Stroke after MitraClip: Systematic Review and Meta-Analysis

Patrícia Barros da Silva¹ MB; José P. Sousa¹ MD; Bárbara Oliveiros¹ PhD; Helena Donato¹,² MLS; Marco Costa³ MD, Lino Gonçalves¹,³ MD, PhD; Rogério Teixeira¹,³,* MD, PhD;

¹ Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
² Serviço de Documentação, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
³ Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal

Short running title: Stroke after MitraClip

*Corresponding author:
Rogério Paiva Cardoso Teixeira
Centro Hospitalar e Universitário de Coimbra – Hospital Geral
Quinta Vales – São Martinho Bispo Ap.7005 3241-801 Martinho do Bispo
rogeriopteixeira@gmail.com

The authors have no conflicts of interest to declare.
Abstract:
Aims: To assess stroke rate after transcatheter mitral valve repair (TMVR) with MitraClip, comparing it with surgical mitral valve repair (SMVR) and optimal medical treatment (OMT).

Methods and Results: We systematically searched PubMed, Embase and Cochrane Controlled Register of Trials, in December 2018, for studies comparing TMVR with SMVR and/or OMT for the treatment of severe mitral regurgitation. Random-effects and cumulative meta-analysis was performed. Ten studies were included: seven of TMVR versus SMVR and three of TMVR versus OMT, providing a total of 1881 patients and 61 pooled strokes (16 in TMVR versus SMVR and 45 in TMVR versus OMT). There was no difference in stroke incidence between TMVR and SMVR (pooled OR 0.49 [0.17, 1.42], P=0.19). Cumulative meta-analysis showed a significantly lower stroke rate in TMVR, compared to SMVR (OR 0.4 [0.24, 0.67], P< 0.01). For TMVR versus OMT, no difference in stroke rate was identified (pooled OR 1.09 [0.60, 1.97], P=0.79). Post-procedure de novo atrial fibrillation was more frequent in SMVR when compared with TMVR.

Conclusions: Although with a low number of pooled events, there was a trend for a lower post-procedure stroke in TMVR when compared with SMVR and a similar one between TMVR and OMT alone.

Classifications: mitral valve repair, stroke, atrial fibrillation, anticoagulant therapy

Condensed abstract: A systematic review assessed stroke rate after transcatheter mitral valve repair (TMVR) with MitraClip, comparing it with surgical mitral valve repair (SMVR) and optimal medical treatment (OMT). Ten studies were included providing a total of 1881 patients. Post-procedure TMVR stroke rate was similar to that of patients managed with OMT only. For the same outcome, results favoured TMVR compared with SMVR. A lower incidence of post-procedure de novo atrial fibrillation was recorded for TMVR compared to SMVR patients.

Abbreviations:
TMVR transcatheter mitral valve repair
SMVR surgical mitral valve repair
OMT optimal medical treatment
MR mitral regurgitation
AF atrial fibrillation
RCTs Randomised Controlled Trials
CI confidence intervals
LVEF left ventricular ejection fraction

Disclaimer: As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal.
Introduction:

It is well-established that surgical mitral valve repair (SMVR) is the *summum* treatment for severe mitral regurgitation (MR). However, a large proportion of patients are deemed unsuitable for surgical treatment, thus representing a striking unmet need in cardiovascular medicine. So far, in patients with both primary and secondary symptomatic MR who are judged inoperable, only the edge-to-edge repair technique with MitraClip (Abbott Vascular Inc, Santa Clara, CA, USA) is globally used (class IIb indication in the most recent European Society of Cardiology Guidelines).

The MitraClip is inspired by the surgical Alfieri technique, which creates a double orifice mitral area. As a result, physiology of diastolic transmitral flow is modified, leading to some restriction in left ventricle filling. Thus, this hemodynamic profile could result in blood stasis, an increased risk of left atrial thrombosis and, consequently, the risk of thromboembolic events. Additionally, atrial fibrillation (AF) complicates the course of MR and is itself a risk factor for stroke and peripheral embolic events. Although this rationale might seem insufficient to offset cardiac surgery stroke risk, it may embody the recommendation for anticoagulation, particularly with vitamin K antagonists, which are the only oral anticoagulants indicated in both mitral prosthesis and mitral stenosis. Despite this, no strict peri and post-MitraClip procedure antithrombotic therapies have been defined so far and distinct protocols are currently being applied.

Systematic reviews support the long-term safety of transcatheter mitral valve repair (TMVR) with the MitraClip for degenerative and functional MR plus the durability of MR reduction. Recent meta-analysis demonstrated that, compared with conservative treatment alone, TMVR is associated with significant relative risk reduction of death from any cause and heart failure in high-risk patients with left ventricular dysfunction. However, none of these reviews specifically analysed stroke incidence. In 2018, the COAPT trial reinforced the increased safety of the edge-to-edge repair technique compared to optimal medical treatment (OMT) while the MITRA-FR trial reported no significant difference in adverse effects between the two groups.

We aim to systematically review the published literature on the comparison between the TMVR with the MitraClip device and both SMVR and OMT groups of patients, analysing stroke incidence among these therapeutic options for MR.

Methods

Protocol and registration

This study was designed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A registration (CRD42018117614) in the PROSPERO database was made at inception.

Literature search

Based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis we systematically searched PubMed, Embase, and Cochrane Controlled Register of Trials (CENTRAL) on 5th December 2018, for both interventional and observational studies comparing TMVR with SMVR and/or OMT for the treatment of severe MR. The search was limited by language (English, French, Portuguese, or Spanish) and type of subjects (human). No date publication limits were imposed. Supplementary 1 shows the search strategy of this review. Additional data were
collected from randomised controlled trial (RCT) protocols. Different publications from the same patients’ cohort were considered as a single study for the purpose of this review.

Eligibility criteria
The following criteria were used to define study eligibility: (1) RCTs or observational studies comparing MitraClip procedure with mitral valve surgery and/or OMT; (2) participants with severe MR; and (3) information on stroke incidence after procedure. We excluded series with less than 20 patients or without full-text article publications.

Primary and secondary outcomes
Primary outcomes were early (<30 days) and late (>30 days) post-procedural stroke rate. Secondary endpoints were de novo AF and bleeding events.

Data collection and management
Two authors (PBS and JPS) systematically screened titles and abstracts of publications retrieved using the search strategy in order to select studies that met the inclusion criteria outlined above. The full text of the eligible studies was, again, independently assessed for eligibility by the two review team members. Any disagreement between them over the eligibility of particular studies was resolved through discussion and involving a third author (RT), when necessary. Data extraction concerned the study population, main demographics and baseline characteristics, interventions, and the outcomes described above. We analysed studies with multiple sequenced publications, ensuring no duplication of results and the collection of the most recent data. Some studies did not break down information on early (<30 days) vs late (>30 days) post-procedural stroke incidence. For this reason, and to increase statistical power, we joined both outcomes, creating an all-stroke post-procedural rate. Post-procedural stroke incidence included both ischaemic and haemorrhagic cerebrovascular events, due to the lack of separate outcomes in the majority of studies. To compare bleeding events incidence, we included major bleeding and need for blood transfusions (>1 unit) in postoperative care.

Risk of bias assessment
Two authors (PBS, JPS) independently assessed the risk of bias of the included articles, following the Cochrane Collaboration's 'Risk of bias' tool for RCTs and Newcastle-Ottawa Scale for observational studies. RCTs were assessed as 'low', 'high' or 'unclear' risk for the following biases: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting and other bias. None of the included studies had a blinding strategy, which resulted in a high risk for performance and detection bias. This assessment was expected, because the MitraClip device is visible on imaging studies, most studies were retrospective, and in the two RCTs on TMVR vs OMT there was no sham procedure. The quality assessment for each study is presented in the ‘risk of bias summary’ (Figure 1) and Newcastle-Ottawa Scale summary (Figure 2).
Statistical analysis

We pooled dichotomous non-adjusted data using odds ratios (OR) to describe effect sizes using the Mantel-Haenszel procedure in a random effects model. We also performed a continuity correction for the individual odds ratios and the overall measure, which considers adding the quantity 0.5 to all cells whenever relative effect measures are undefined due to the presence of zeros. Study heterogeneity was evaluated by funnel plots while publication bias was evaluated by Egger’s Test and both Galbraith and normalized Galbraith plots. To evaluate temporal trends on stroke incidence, a cumulative meta-analysis was performed according to date of publication, following a usual meta-analysis. In the cumulative analysis, studies were successively added by year of publication and the 95% confidence intervals (CI) and overall standardised mean differences were recalculated, enabling us to evaluate the outcome evolution over time. Impact for both age and left ventricular ejection fraction (LVEF) in stroke incidence between TMVR and SMVR was analyzed by meta-regression based on the mixed-effects model.

The mean effect was considered significant if its 95% CI did not include zero. Heterogeneity was assessed using the I² statistic and assumed to be relevant if it exceeded 50%.

The cumulative meta-analysis and the meta-regression was performed using R software through R Studio, version 1.1.463, and the traditional meta-analysis using RevMan 5.3.

Results
Search results

Literature search identified 1447 articles, and two cited RCTs (MITRA-FR and COAPT) were added. After duplication removal, we excluded a total of 1194 publications based on title and abstract evaluation, study type (RCTs or observational studies comparing MitraClip procedure with SMVR and/or OMT) and study population (participants with severe MR). The full text of the remaining 47 studies was then screened, leading to exclusion of 35 publications: three studies only included outcomes of MitraClip populations, one study only reported stroke rates on the mitral valve surgical arm, two full texts could not be accessed, eight did not specifically refer to post-procedure stroke incidence, 12 were conference abstracts or RCTs’ design studies, three used data from the Everest trial for a different analysis and three RCTs did not yet included any published results; Taramasso was chosen among 4 studies based on the same institutional population, as it included a wider number of participants. Finally, 12 publications met all the inclusion criteria for the qualitative review and 10 of these were suitable for the quantitative synthesis with meta-analysis (Figure 3). Seven studies compared TMVR versus SMVR and three TMVR versus OMT, providing a total of 1881 patients and 61 pooled strokes (16 in TMVR versus SMVR and 45 in TMVR versus OMT). Baseline characteristics of included studies are shown in Table 1.

MitraClip versus Surgery

We identified seven studies comparing TMVR using MitraClip with surgical repair/replacement. TMVR patients were older and had higher surgical risk scores than SMVR patients. Groups were homogeneous regarding previous AF rate (pooled OR 1.45 [0.82-2.55], Figure 4), whereas post-
procedure *de novo* AF was more frequent in SMVR compared with TMVR (pooled OR 0.20 [0.06-0.7], Figure 5), in the four studies that reported data on 30-day post-procedural AF. There was no significant difference in stroke incidence between TMVR and SMVR (pooled OR 0.49 [0.17, 1.42], P=0.19, I²= 0%, Figure 6). The cumulative meta-analysis showed a significantly lower stroke rate in TMVR compared with SMVR (OR 0.4 [0.24, 0.67], P < 0.01, Figure 7). This result was evident from 2013, after adding Conradi22 to the previous studies (OR 0.46 [0.22, 0.98], P=0.044).

Studies were homogeneous and no selection or publication bias were identified by funnel plots, which was confirmed by the Galbraith or the normalized Galbraith plots (Supplementary figures 2 to 4). Moreover, the Egger test confirmed that the normalized effects were independent from the precision (b = 0.38, P = 0.82, t value = 0.24; R2 = 0.013, Supplementary figure 5). Also, Begg and Mazumdar test confirmed that the effects were not related to their variance (kendall’s tau = 0.14; P = 0.77).

Meta-regression for age and LVEF had small effect sizes with no statistically significant P-values (respectively Z = -0.61, p = 0.54 and Z = 0.038, P = 0.97).

Bleeding events were less frequent in TMVR compared to SMVR (pooled OR 0.25 [0.11, 0.56], P<0.05, I²= 33%, Figure 8).

MitraClip versus OMT

There were five studies comparing TMVR using MitraClip plus OMT with OMT exclusively. However, only three of these provided data on stroke incidence during follow-up in both TMVR and OMT groups and were used for meta-analysis. No difference in stroke rate was identified (pooled OR 1.09 [0.60, 1.97], P=0.79, I²=0%, Figure 9).

Discussion and Limitations

According to our meta-analysis in the context of MR treatment: (i) the pooled stroke rate after TMVR, SMVR and OMT for MR patients had a low number of events; (ii) there was a trend for a lower stroke rate for patients submitted to TMVR compared to SMVR; (iii) there was a similar stroke rate for patients treated with TMVR when compared to patients allocated to OMT; and (iv) post-procedure AF was more frequent after SMVR when compared to TMVR patients.

The decision to deny surgery for patients with MR is mostly based on impaired LVEF, age, and comorbidity1. For this reason, MitraClip patients are theoretically at increased risk for AF and stroke. However, our results indicate the opposite. In addition, they support the most recent systematic review that reported similar survival for TMVR with MitraClip and surgery, despite patients’ higher risk profiles in TMVR group23. However, to the best of our knowledge, this is the first and only meta-analysis to specifically examine stroke and *de novo* AF rate after mitral valve repair with MitraClip, comparing it with both surgery and OMT.

OMT

In patients who are not candidates for surgery, the option between TMVR with MitraClip and OMT alone is still debated: MITRA-FR trial17 showed that both treatments were similar regarding adverse effects, but the COAPT trial16 results favoured the MitraClip for the same outcome. For stroke incidence, our analysis showed that post-TMVR with MitraClip stroke rate was similar to that of patients managed with OMT alone. This finding is unexpected, as, for instance,
transseptal puncture for catheter ablation poses a risk for paradoxical embolism, which has already been described for catheter ablation of arrhythmia24. Selecting patients for percutaneous treatment with optimal risk–benefit balance is still subject to ongoing research. Hopefully, the RESHAPE-HF trial may solve the present controversy regarding MitraClip safety compared to conservative treatment, allowing a more sustained clinical decision25.

Mitral Valve surgery

Although regular meta-analysis suggested no significant difference in stroke incidence between TMVR and SMVR, a cumulative meta-analysis, added by year of publication, showed a significantly lower stroke rate in TMVR, compared to SMVR, suggesting a temporal trend in this direction26. Cumulative meta-analysis is still not a widely used statistical tool, but this chronological combination of studies has been proposed as a valuable method to decide when to stop ongoing trials or to adopt or reject an investigated treatment by different authors27, 28. A 2018 meta-analysis reported a negative effect of previous AF in TMVR 1-year survival rate, but did not address specific post-procedure adverse events or \textit{de novo} AF29. However, a recent retrospective study comparing TMVR with MitraClip in patients with and without previous AF reported no significant difference in stroke incidence during follow-up29. The lower stroke rate for TMVR compared with SMVR might therefore be related to its lower incidence of \textit{de novo} AF.

Antithrombotic therapy

Only six of the 12 studies described post-procedure antithrombotic strategy, and only three were similar, hindering a comprehensive analysis of the used protocols. Antithrombotic therapy has never been formally evaluated in terms of outcome events in this setting. Both direct oral anticoagulants and vitamin K antagonists are currently used. However, considering biomechanical similarity, there is the possibility of a contraindication to direct oral anticoagulants in MitraClip, as in mitral stenosis and mitral prothesis9. Nevertheless, similar stroke incidence for TMVR and OMT indicates no concern regarding the use of direct oral anticoagulants after the MitraClip procedure.

Future Perspectives

The call for a specific antithrombotic strategy is justified not only by the high prevalence of AF in TMVR with MitraClip candidates but also by the increased risk of left atrial thrombus formation after the procedure, caused by acute reduction of MR and changes in hemodynamics within the left atrium4-7. Our findings suggest the need for RCTs on different post-MitraClip procedure antithrombotic treatments, in order to define a strict protocol, particularly for patients with AF. This is of major interest, because AF is highly prevalent in TMVR with MitraClip candidates and the choice of antithrombotic treatment has a high impact on both quality of life and health costs.

Limitations

The most important limitation of our meta-analysis is the paucity of RCTs on this issue. In fact, the majority of studies included were observational and not randomised, increasing the risk of bias and therefore limiting the strength of our results. Furthermore, for our primary outcome there were only 16 events among the 930 patients included in the comparison between TMVR
and SMVR, which is a low number of pooled events. We tried to overcome this limitation by applying a continuity correction and a cumulative meta-analysis\cite{28}. One could argue that low event rate is the justification for the statistical homogeneity found ($I^2 = 0\%$), despite numerically heterogeneity (odds ratios range from 0.1 to 2.43), that enabled the performance of a cumulative meta-analysis. However, by combining study events and sample sizes, the cumulative meta-analysis may improve the statistical power as similar results are combined cumulatively. This method reduces the problem caused by the low event rate and especially by the presence of zero values in study groups. Regarding pooled stroke, data was not available for fatal versus non-fatal stroke, haemorrhagic stroke and transient ischemic attack.

Conclusion

Although with a low number of pooled events, our methodology showed a trend for a lower post-procedure stroke rate for TMVR when compared with SMVR, possibly related to a lower incidence of *de novo* AF found in the percutaneous group. For the same outcome, rates were similar between TMVR and OMT alone. A clinical trial comparing MitraClip patients with and without previous AF, with and without anticoagulant therapy in the first group, is still needed to resolve this dilemma.

Impact on Daily Practice

These findings may prove insightful for future recommendations regarding the conundrum of the best antithrombotic strategy, particularly for patients with AF.

Funding

No funding was provided for this research.

Conflict of interest

The authors declare that they have no conflict of interests that could prejudice the impartiality of this review.

References

Disclaimer: As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal.
Figure legends:

Figure 1- Risk of Bias Summary
Figure 2- Newcastle-Ottawa Scale summary
Figure 3- Flow diagram of literature search
Figure 4- TMVR vs. SMVR - Previous atrial fibrillation
Figure 5- TMVR vs. SMVR - De novo atrial fibrillation
Figure 6- TMVR vs. SMVR - All stroke incidence
Figure 7- TMVR vs. SMVR - All stroke incidence, Cumulative Meta-analysis
Figure 8- TMVR vs. MV Surgery – Bleeding events
Figure 9- TMVR vs. OMT - All stroke incidence
<table>
<thead>
<tr>
<th>Author</th>
<th>Publication</th>
<th>Design</th>
<th>Control</th>
<th>Patients no.</th>
<th>Mean age-years (SD)</th>
<th>Duration of follow up (months)</th>
<th>Post MitraClip antithrombotic protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alozie, A <sup>30</sup></td>
<td>2017</td>
<td>Retrospective</td>
<td>SMV repair or replacement</td>
<td>42</td>
<td>MitraClip: 82.2 (1.65) Control: 81.7 (1.35)</td>
<td>9</td>
<td>3 months DAPT, followed by SAPT indefinitely</td>
</tr>
<tr>
<td>Anwer, LA <sup>31</sup></td>
<td>2018</td>
<td>Retrospective</td>
<td>SMV repair</td>
<td>56</td>
<td>MitraClip: 75.7 (8.6) Control: 68.6 (13.1)</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>Conradi, L <sup>32</sup></td>
<td>2013</td>
<td>Retrospective</td>
<td>SMV repair</td>
<td>95</td>
<td>MitraClip: 72.4 (8.1) Control: 64.5 (11.4)</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Feldman, T <sup>33</sup></td>
<td>2011</td>
<td>RCT- EVEREST</td>
<td>SMV repair or replacement</td>
<td>184</td>
<td>MitraClip: 67.3 (12.8) Control: 65.7 (12.9)</td>
<td>60</td>
<td>Heparin during procedure, 30 days DAPT, 6 months SAP</td>
</tr>
<tr>
<td>Geis, N <sup>34</sup></td>
<td>2017</td>
<td>Retrospective</td>
<td>OMT</td>
<td>86</td>
<td>MitraClip: 68.2 (11) Control: 53.4 (13)</td>
<td>24</td>
<td>Coumadin for at least 4 weeks post implantation</td>
</tr>
<tr>
<td>Krawczyk-Ozog, A <sup>35</sup></td>
<td>2018</td>
<td>Retrospective</td>
<td>OMT</td>
<td>10</td>
<td>MitraClip: 71.8 (7.8) Control: 73.0 (11.5)</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Obadia, J-F <sup>36</sup></td>
<td>2016</td>
<td>Retrospective</td>
<td>Minimally invasive MV repair</td>
<td>152</td>
<td>MitraClip: 70.1 (10.1) Control: 70.6 (9.9)</td>
<td>12</td>
<td>3 months DAPT, followed by SAPT indefinitely</td>
</tr>
<tr>
<td>Ondrus, T <sup>37</sup></td>
<td>2013</td>
<td>Retrospective</td>
<td>SMV repair</td>
<td>24</td>
<td>MitraClip: 75 (9) Control: 76 (4)</td>
<td>34</td>
<td>-</td>
</tr>
<tr>
<td>Paranskaya, L <sup>16</sup></td>
<td>2018</td>
<td>RCT-COAPT</td>
<td>OMT</td>
<td>302</td>
<td>MitraClip: 71.7 (11.8) Control: 72.8 (10.5)</td>
<td>22.7</td>
<td>6 months DAPT</td>
</tr>
<tr>
<td>Taramasso, M <sup>18</sup></td>
<td>2012</td>
<td>Retrospective</td>
<td>SMV repair</td>
<td>52</td>
<td>MitraClip: 68.4 (9.2) Control: 64.9 (9.8)</td>
<td>8.5</td>
<td>-</td>
</tr>
</tbody>
</table>

DAPT dual antiplatelet therapy; SAPT single antiplatelet therapy; OMT optimal medical treatment; SMV surgical mitral valve.

Disclaimer: As a public service to our readership, this article – peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal.
<table>
<thead>
<tr>
<th></th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Selective reporting (reporting bias)</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feldman 2011</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EVEREST Trial</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Obadia 2018</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mitra-FR Trial</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Stone 2018</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>COAPT Trial</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Study</td>
<td>Selection</td>
<td>Comparability</td>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alozie 2017</td>
<td>****</td>
<td>*</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwer 2018</td>
<td>***</td>
<td>**</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conradi 2013</td>
<td>****</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geis 2018</td>
<td>***</td>
<td>-</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giannini 2016</td>
<td>****</td>
<td>-</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krawczyk-Ozog 2018</td>
<td>***</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ondrus 2016</td>
<td>****</td>
<td>*</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paranskaya 2013</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taramasso 2012</td>
<td>****</td>
<td>*</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study or Subgroup</td>
<td>TMVR Events</td>
<td>TMVR Total</td>
<td>SMVR Events</td>
<td>SMVR Total</td>
<td>Weight</td>
<td>Odds Ratio M–H, Random, 95% CI</td>
<td>Year</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Feldman 2011 – EVEREST Trial</td>
<td>59</td>
<td>175</td>
<td>35</td>
<td>89</td>
<td>17.4%</td>
<td>0.78 [0.46, 1.33]</td>
<td>2011</td>
</tr>
<tr>
<td>Taramasso 2012</td>
<td>37</td>
<td>52</td>
<td>29</td>
<td>91</td>
<td>15.2%</td>
<td>5.27 [2.50, 11.10]</td>
<td>2012</td>
</tr>
<tr>
<td>Conradi 2013</td>
<td>55</td>
<td>95</td>
<td>35</td>
<td>76</td>
<td>16.6%</td>
<td>1.61 [0.88, 2.96]</td>
<td>2013</td>
</tr>
<tr>
<td>Paranskaya 2013</td>
<td>15</td>
<td>24</td>
<td>14</td>
<td>26</td>
<td>11.3%</td>
<td>1.43 [0.46, 4.42]</td>
<td>2013</td>
</tr>
<tr>
<td>Ondrus 2016</td>
<td>18</td>
<td>24</td>
<td>33</td>
<td>48</td>
<td>11.5%</td>
<td>1.36 [0.45, 4.13]</td>
<td>2016</td>
</tr>
<tr>
<td>Alozie 2017</td>
<td>29</td>
<td>42</td>
<td>23</td>
<td>42</td>
<td>13.6%</td>
<td>1.84 [0.75, 4.50]</td>
<td>2017</td>
</tr>
<tr>
<td>Anwer 2018</td>
<td>40</td>
<td>56</td>
<td>61</td>
<td>75</td>
<td>14.4%</td>
<td>0.57 [0.25, 1.30]</td>
<td>2018</td>
</tr>
</tbody>
</table>

Total (95% CI) 468 / 447 100.0% 1.45 [0.82, 2.55]

Total events: 253 / 230

Heterogeneity: Tau² = 0.41; Chi² = 21.89, df = 6 (P = 0.001); I² = 73%
Test for overall effect: Z = 1.27 (P = 0.20)
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>TMVR Events</th>
<th>TMVR Total</th>
<th>SMVR Events</th>
<th>SMVR Total</th>
<th>Weight</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feldman 2011 – EVEREST Trial</td>
<td>2</td>
<td>184</td>
<td>0</td>
<td>95</td>
<td>13.7%</td>
<td>2.62 [0.12, 55.05]</td>
<td>2011</td>
</tr>
<tr>
<td>Parasikaya 2013</td>
<td>1</td>
<td>24</td>
<td>3</td>
<td>26</td>
<td>20.3%</td>
<td>0.33 [0.03, 3.45]</td>
<td>2013</td>
</tr>
<tr>
<td>Buzzatti 2015</td>
<td>2</td>
<td>25</td>
<td>13</td>
<td>35</td>
<td>32.1%</td>
<td>0.15 [0.03, 0.73]</td>
<td>2015</td>
</tr>
<tr>
<td>Anwer 2018</td>
<td>2</td>
<td>54</td>
<td>20</td>
<td>55</td>
<td>33.9%</td>
<td>0.07 [0.01, 0.31]</td>
<td>2018</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>287</td>
<td>211</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.20 [0.06, 0.70]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>7</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.63$; $\chi^2 = 4.87, \text{df} = 3 (P = 0.18); I^2 = 38\%$

Test for overall effect: $Z = 2.51 (P = 0.01)$
Study or Subgroup

<table>
<thead>
<tr>
<th>Study/Author</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feldman, T., 2011</td>
<td>0.51 [0.07, 3.69]</td>
</tr>
<tr>
<td>Taramasso, M., 2012</td>
<td>0.44 [0.12, 1.59]</td>
</tr>
<tr>
<td>Paranskaya, L., 2013</td>
<td>0.46 [0.17, 1.20]</td>
</tr>
<tr>
<td>Conradi, L., 2013</td>
<td>0.46 [0.22, 0.98]</td>
</tr>
<tr>
<td>Ondrus, T., 2016</td>
<td>0.44 [0.23, 0.85]</td>
</tr>
<tr>
<td>Alozie, A., 2017</td>
<td>0.40 [0.23, 0.72]</td>
</tr>
<tr>
<td>Anwer, L. A., 2018</td>
<td>0.40 [0.24, 0.67]</td>
</tr>
</tbody>
</table>

Disclaimer: As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal.
Table: Study or Subgroup

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>TMVR Events</th>
<th>TMVR Total</th>
<th>SMVR Events</th>
<th>SMVR Total</th>
<th>Weight</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feldman 2011 - EVEREST Trial</td>
<td>24</td>
<td>184</td>
<td>42</td>
<td>95</td>
<td>45.7%</td>
<td>0.19 [0.10, 0.34]</td>
<td>2011</td>
</tr>
<tr>
<td>Buzzatti 2015</td>
<td>0</td>
<td>25</td>
<td>1</td>
<td>35</td>
<td>5.4%</td>
<td>0.45 [0.02, 11.53]</td>
<td>2015</td>
</tr>
<tr>
<td>Ondrus 2016</td>
<td>1</td>
<td>24</td>
<td>5</td>
<td>48</td>
<td>10.6%</td>
<td>0.37 [0.04, 3.39]</td>
<td>2016</td>
</tr>
<tr>
<td>Alozie 2017</td>
<td>3</td>
<td>42</td>
<td>2</td>
<td>42</td>
<td>14.2%</td>
<td>1.54 [0.24, 9.71]</td>
<td>2017</td>
</tr>
<tr>
<td>Anwer 2018</td>
<td>3</td>
<td>56</td>
<td>25</td>
<td>75</td>
<td>24.0%</td>
<td>0.11 [0.03, 0.40]</td>
<td>2018</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>331</td>
<td>75</td>
<td>295</td>
<td>100.0%</td>
<td>0.25 [0.11, 0.56]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.27$; $\text{Chi}^2 = 6.00$, df = 4 ($P = 0.20$); $I^2 = 33\%$

Test for overall effect: $Z = 3.40$ ($P = 0.0007$)

Disclaimer: As a public service to our readership, this article – peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received. The content of this article is the sole responsibility of the authors, and not that of the journal.
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>TMVR Events</th>
<th>Total</th>
<th>OMT Events</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone 2018 – COAPT Trial</td>
<td>11</td>
<td>302</td>
<td>11</td>
<td>312</td>
<td>49.3%</td>
<td>1.03 [0.44, 2.42]</td>
<td>2018</td>
</tr>
<tr>
<td>Obadia 2018 – Mitra–FR Trial</td>
<td>11</td>
<td>152</td>
<td>11</td>
<td>152</td>
<td>47.4%</td>
<td>1.00 [0.42, 2.38]</td>
<td>2018</td>
</tr>
<tr>
<td>Krawczyk-Ozog 2018</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>23</td>
<td>3.3%</td>
<td>7.42 [0.28, 198.83]</td>
<td>2018</td>
</tr>
</tbody>
</table>

Total (95% CI) 464 487 100.0%

Odds Ratio M–H, Random, 95% CI 1.09 [0.60, 1.97]

Total events 23 22
Heterogeneity: Tau² = 0.00; Chi² = 1.36, df = 2 (P = 0.51); I² = 0%
Test for overall effect: Z = 0.27 (P = 0.79)