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Narrative Abstract

Composite endpoints are commonly used in clinical trials, and time-to-first-event analysis has
been the usual standard. Time-to-first-event analysis treats all components of the composite
endpoint as having equal severity and is heavily influenced by short-term components. Over
the last decade, novel statistical approaches have been introduced to overcome these
limitations. We reviewed win ratio analysis, competing risk regression, negative binomial
regression, Andersen-Gill regression, and weighted composite endpoint (WCE) analysis. Each
method has both advantages and limitations.

The advantage of win ratio and WCE analyses is that they take event severity into account by
assigning weights to each component of the composite endpoint. These weights should be pre-
specified, because they strongly influence treatment effect estimates. Negative binomial
regression and Andersen-Gill analyses consider all events for each patient — rather than only
the first event — and tend to have more statistical power than time-to-first-event analysis.
Pre-specified novel statistical methods may enhance our understanding of novel therapy when
components vary substantially in severity and timing. These methods consider the specific type

of patients, drugs, devices, events, and follow-up duration.

Classifications

Clinical research; Clinical trials; Training and education
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Introduction

Composite endpoints are commonly used in clinical trials. Recently, the Academic Research
Consortium-2 consensus stated that patient-oriented composite endpoints — the overall
cardiovascular outcomes from the patient perspective, including all-cause death, any type of
stroke, any myocardial infarction (M), and any repeat revascularization — should constitute the
foundation of novel coronary device or pharmacotherapeutic agent assessment.
Time-to-first-event method has been commonly used for the analysis of composite endpoints,
but has the inherent limitation of treating all contributory endpoints as having equal severity
and only gives weight to the first endpoint encountered in time. Thus, nonfatal events that
occurred earlier have more impact than more serious events such as stroke or death that occur
later. Furthermore, death may preclude or render impossible the observation of nonfatal events.
Over the last decade, several novel statistical methods have been proposed to overcome these
limitations. These methods consider all events occurring until follow-up, incorporate the
severity of clinical events, and account for the competing risk nature of different eventsi-1o.
We aim to review the different statistical methods other than the traditional time-to-first-event
analysis, including win ratio analysis, competing risk regression, negative binomial regression,

Andersen-Gill regression, and weighted composite endpoint (WCE) analysis (Figure 1).

Statistical approaches

1) Win ratio analysis

Win ratio analysis was introduced by Pocock et al. in 2012 and is a rank-based method, which
puts more emphasis on the most clinically important component of the composite endpoints by
ranking the constituent componentsi. This analysis requires 4 steps: 1) ranking events by their
severity, 2) making patient pairs, 3) decision of a winner in each patient pair, and 4) calculation

of win ratio.
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First, the components of the composite endpoint are ranked on the basis of their perceived
severity. Second, the concept is to match patients with different treatment assignment based on
their individual risk estimates. Pocock et al. proposed to estimate a composite risk score for
each patient based on pre-selected baseline prognostic factorsz. Patients in the experimental
treatment arm are matched to patients with similar risk score in the control arm on the condition
that the follow-up durations do not differ greatly (Figure 2A-1). When the number of patients
in the 2 groups differs, some patients are randomly excluded to equalize the number of patients
in both groups.

The third step is to decide a winner in each matched patient pair (Figure 2A-2). The comparison
of each pair is performed using every type of categorized event, either death, or stroke, or Ml,
or other event. The events of each patient pair are evaluated to decide whether one had the most
severe event (usually death is applied). If this is not the case (both patients were alive at the
end of follow-up), the remaining pairs are then evaluated for the occurrence of an event ranked
second in severity, and so on for each ranking (third, fourth, or fifth rank). If there were no
events until the time of last follow-up, the pair is treated as “tied”1. The win ratio emphasizes
the more severe components when comparing composite endpoints between 2 groups of
patients (Figure 2B).

Fourth, the win ratio is calculated as the number of winners divided by the number of losers,
and a 95% confidence interval for the win ratio is easily obtainable1 (Figure 2A-3). Since
matched pairings are influenced by patients who are randomly excluded, it may be necessary
to perform analyses repeatedly with different randomly excluded patients. Pocock et al. have
described the formulas for these calculations: and these calculations do not require special
software. In addition, Luo et al. presented a code for R software (R Foundation for Statistical

Computing, Vienna, Austria) and this code could be helpfuliz.
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Win ratio analysis is a rank-based method and could reflect the event severity in the analysis
of composite endpoints. Therefore, it is valuable when the components of composite endpoint
vary in their clinical severity and importance (e.g. composite endpoint of death, stroke, Ml,
and revascularization in an ischemic heart disease trial; composite endpoint of cardiovascular
death and heart failure hospitalization in a heart failure trial). On the other hand, there are
several limitations. Severity ranking of each adverse event affects the result of the composite
endpoint and the ranking in itself is debatable without universal consensus (e.g. severity
ranking of MI and major bleeding). In addition, it only can be applied to the comparison
between 2 groups. An example used in EMPHASIS-HF study, which compared eplerenone
(n=1364) and placebo (n=1373) in patients with New York Heart Association (NYHA) class

Il heart failure and ejection fraction =35%, is shown in Figure 2Ca.

Several options for making pairs have been proposed for comparing patients with similar
anatomic and physio-pathological background. For example, prognostic scores, such as
anatomic SYNTAX score and SYNTAX score 1, have been applied, instead of composite
relative risk scoress, 4.

In long-term event-driven trials, patient follow-up durations vary greatly, and many pairs are
often categorized as “tied” (Figure 2D). To reduce this problem, patients can be stratified into
several follow-up duration categories and patients are matched in strata of similar follow-up
durations.

When baseline risk factors are not well established, it is more difficult to match patients on the
basis of risk. In this case, one can compare every patient in one group with every patient in the
other group (unmatched pairs approach)s, 2.

2) Competing risk regression

An event (e.g. non-cardiovascular death) which precludes less severe events or an event (e.g.

heart transplant) which changes the possibility to observe events of interest (e.g. congestive
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heart failure) are called competing risks (Figure 3A). Competing risk regression method takes
these issues into account for composite endpoints and allows disentangling the contribution of
an intervention on each type of event. The Fine-Gray model is the most popular modeli2. In
this model, patients experiencing competing risk events remain in the risk set for the event of
interest until experiencing events of interest or their censoring (Figure 3B, C). This analysis
can be easily performed using free statistical software, EZR, and Kanda has described the
detailed methodzs.

This competing risk within clinical research was first introduced in the field of Oncology. In
patients who underwent chemotherapy for cancer, failure events commonly studied are relapse
of the cancer and treatment-related death. The interest is to estimate the probability of relapse.
In this case, treatment-related death is a competing risk event (which would obviously not
allow the investigators to observe any relapse of cancer in dead patients) and competing risk
regression analysis is usefulia. When the age of study population is high, death could be used
as a competing risk since the rate of non-treatment related death is relatively high. In the
substudy of prosthetic valve endocarditis from the PARTNER trialis, age of patients was 83
years and death was used as the competing risk event. Incidences of prosthetic valve
endocarditis after transcatheter and surgical aortic valve replacement were assessed using this
competing risk regression model (Figure 3D). In the field of cardiology, all-cause death often
may be less device or procedure specific than deaths adjudicated as cardiovascular death. Non-
cardiovascular death could be used as a competing risk, although all-cause death is the most
unbiased method to report deaths.

3) Negative binomial regression

The traditional time-to-first-event analysis only evaluates the first adverse event and does not
capture the subsequent events. However, in the field of cardiology, some adverse events, such

as revascularization, bleeding, hospitalization for heart failure, occur repeatedly. Incorporation
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of all events are meaningful in terms of the evaluation of patients’ quality of life and medical
cost. In addition, increase of the number of events could yield additional statistical power. A
simple method for the assessment of all adverse events between two groups is to compare the
numbers of events.

In a book entitled “The Law of Small Numbers”, Bortkiewicz investigated the annual deaths
by horse kicks in the Prussian Army from 1875 to 1984, and noted that events with low
frequency in a large population follow a Poisson distribution even when the probability varies
(Supplementary figure 1A). The Poisson distribution has commonly been used to model the
number of events in an interval of time (Supplementary figure 1A). The variance of clinical
events in a trial is usually greater than the mean (Supplementary figure 1B). In other words,
the distribution of the number of clinical events is better represented by an over-dispersed
Poisson distribution. The negative binomial distribution is often used for modeling over-
dispersed Poisson data. Negative binomial regression analysis has been used to estimate
treatment effect in terms of the rate ratio of a composite endpoints-s(Figure 4A) and is valuable
especially in high risk population since patients tend to experience repeated adverse events.
For this analysis, “glm.nb” function from the “MASS” package in R software could be
helpfulie. In the PARADIGM-HF trial7, the primary endpoint (a composite of cardiovascular
death or hospitalization for congestive heart failure) was analyzed by a negative binomial
regression analysis (Figure 4B). On the other hand, this analysis considers only the total
account of events per patient. Therefore, the same follow-up duration should be applied per
patient, which sometimes restricts the application of this method.

4) Cox-based models for recurrent events

Negative binomial regression analysis is not applicable if the follow-up duration differs from
patient to patient. To overcome this limitation, several time-to-event methods have been

proposed for the analysis of repeated events. The Andersen-Gill model is a simple extension
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of the traditional Cox model and is based on a gap-time approach, in which the clock is reset
after an event and the patient is at risk for the next event. This analysis assumes that the risk of
an event is not affected by whether another event has already occurreds, 4, 8. The Wei-Lin-
Weissfeld (WLW) model is different from the Andersen-Gill model in that it uses the time
from study entry to the first, second and subsequent events (Figure 5A)7,s. In the WLW model,
each time-ordered event is analyzed on its own time-to-event basis, that is, for the 1st events
in each patient, the 2nd events in each patient, the 3rd events in each patient, and so on. For
these analyses, “coxph” function from the “survival” package in R software could be helpfuli7.
These analyses consider all adverse events and time to events. Therefore, these analyses are
valuable in high risk population like the negative binomial regression analysis. In addition,
these analyses are applicable regardless of the follow-up duration of each patient. On the other
hand, this methodological approach treats all adverse events as having equal severity, and
severe adverse events, such as death, could be underestimated as well as time-to-first-event
analysis. In the REDUCE-IT trial, the primary endpoint (a composite of cardiovascular death,
MI, stroke, revascularization, or hospitalization for unstable angina) — including recurrent
events — was analyzed using the Andersen-Gill and the WLW approaches (Figure 5B)s.

5) Weighted composite endpoint (WCE)

The WCE methodology extends the standard time-to-event methodology by determining a
weight for each of nonfatal events (event severity) and incorporating all adverse events into the
analysis (recurrent events)s, 4, 9, 10. The WCE analysis requires 4 steps: 1) Decision of event
weights, 2) Calculation of residual weight at the end of each day in each patient, 3) Creation
of a modified life table with a weighted number of patients at risk, and 4) Comparison of groups
(Figure 6A).

In the field of cardiovascular disease, two sets of event weights have been useds, 10. The first

set gives a weight of 1.0 to death, 0.47 to stroke, 0.38 to MI, and 0.25 to target vessel
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revascularizations, 4, and in the second set, death has a weight of 1.0, shock has a weight of
0.5, congestive heart failure has a weight of 0.3, re-MI has a weight of 0.2, and re-ischemia has
a weight of 0.1. These weights were decided based on Delphi panels to achieve consensus
between clinician-investigators. Delphi panel is a panel of experts to achieve consensus in
solving a problem or deciding the most appropriate strategy based on the results of multiple
rounds of questionnaires.

For calculation of residual weights at each time point, each patient starts with a weight of 1.0,
which remains unaltered if no event occurs until end of follow-up (Figure 6A-2-a). Nonfatal
events reduce the residual weight of a patient by the weight of the event (Figure 6A-2-b, c, d).
From the individual patient data, a modified life table with a weighted number of patients at
risk is created, providing estimates of weighted event rates in each group and of a weighted
hazard ratio for the reference group (Figure 6A-3). The WCE method allows the incorporation
of repeated events in a single patient and distinguishes between the severity of components of
the composite endpoint. Indication for this- method is the same as that for time-to-first-event
analysis and a representative analysis of this WCE in the DELTA registrys is shown in Figure
6B. This approach may better reflect all event information, but evidently depends on assigned
event weights. Furthermore, weighing events reduces the number of effective events.
Therefore, WCE could limit power and requires a larger sample size, although statistical power
largely depends on severe outcomes, such as deathis. To date, commercial statistical software
do not support this analysis and there is no R package for this analysis in the Comprehensive

R Archive Network or Bioconductor. Therefore, this analysis needs dedicated program.

Comparison of methods; How do we treat a composite endpoint?
The differences in dealing with composite endpoints are shown in Figure 7. These statistical

methods have recently been applied to several clinical trials in the field of cardiology (Figure
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8, 9). The estimated treatment effect, using multiple statistical methods, showed similar
tendencies, but, as expected, the significance of the treatment effect estimates was dependent
on the statistical method used in trials. The negative binomial regression and the Andersen-Gill
analyses tended to have more statistical power than time-to-first-event analysis, while the
statistical power of the WCE method tended to be low. In particular, WCE did not demonstrate
a significant difference between treatments (Figure 8), in contrast with time-to-first-event
analyses.

The method of counting a “series of events” has to be defined in detail for analyses using all
adverse eventsio. Whenever a revascularization is performed on the same day as MI, the
number of serial events would depend on the methodological definition. Two events (MI and
revascularization) occurring on the same day could even be counted as one events, s. Therefore,
the method of event counting could affect the result.

The win ratio and WCE analyses depend on the severity ranking and weighting of events
severity, which may induce arbitrariness of the comparison. On the other hand, a universal
ranking is not appropriate because the event severity may depend on patient characteristics.
For example, the impact of revascularization is different in the patients with and without a
history of percutaneous coronary intervention. The way to determine event severity should be

discussed in future trials. Pre-specification of weights is necessary to avoid any arbitrariness.

Conclusion

All methods for the analysis of composite end points have strengths and weaknesses (95 10).
Pre-specified novel statistical methods may enhance our understanding when components vary
substantially in severity and timing. These methods should consider the specific type of

patients, drugs, devices, events, and follow-up duration.
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Figure legends
Figure 1. Decision tree for statistical models

WLW, Wei-Lin-Weissfeld; WCE, weighted composite endpoint.

Figure 2. Win ratio

(A) Flow chart for analysis. (A-1) Adjustment of each group. When there are slightly unequal
sample sizes in Groups A (n=417) and B (n=419), respectively, 2 patients (*) are randomly
excluded from Group B to equalize the number of patients. The patients are arranged and
tabulated based on the decreasing ranking of their relative risk scores. (A-2) Patients’ level
assessment. Winners and losers are decided based on event severity within the censoring
period. In the condition that decreasing ranking of event severity is death, stroke and
myocardial infarction (MI), decisions in each pair are as follows.

(Pair 1) Death is the most severe event, so the patient figuring in the upper line is a loser.
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(Pair 2) A death does not occur in neither patient. The event of stroke should be evaluated
because stroke is more severe than Ml but less than death, and the patient figuring in the upper
line is a loser.

(Pair 3) A death occurs after the others’ follow-up time, so the times to Ml in absence of death
or stroke occurrence should be compared. The upper line patient is a loser.

(Pair 4) An MI occurs after the others’ follow-up time, and there are no events until censoring.
Therefore, a winner and a loser are not established and we have a tie.

(A-3) Group assessment. The win ratio is provided by (total number of winners) / (total number
of losers). See example: 1.30 (= (12+34+62) / (7+21+55)).

(B) The events used are different between the win ratio and traditional time-to-first-event
analyses.

(C) The application of win ratio analysis in EMPHASIS-HF study.

(D) Time stratified approach. Whenever patient follow-up durations vary greatly, patients can
be stratified into some follow-up duration categories (e.g. long follow-up group and short
follow-up group) and pairs are matched in each category based on the decreasing ranking of
each patient relative risk score.

NYHA, New York Heart Association; EF, ejection fraction; HF, heart failure; CV,

cerebrovascular.

Figure 3. Competing risks

(A) Non-cardiovascular (CV) death precludes the possible subsequent events of congestive
heart failure (CHF), and heart transplant changes the possibility of CHF occurrence. Therefore,
these events are called competing risks.

(B) Flow chart for analysis. (B-1) Each group. (B-2) Patients’ level assessment. In Fine-Gray

model, patients experiencing competing risk events (e.g. heart transplant) remain in the risk set
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for the event of interest (e.g. CHF) until either experiencing events of interest or their
censoring. (B-3) Group assessment. From patient at risk and number of events, cumulative
event rate is calculated. When we compare groups, the result is presented as hazard ratio and
p-value.

(C) Flow chart for analysis. (C-1) Each group. (C-2) Patients’ level assessment. In the case that
competing risk event is a non-CV death, a competing risk event (non-CV death) is treated as a
censoring because death isn’t an event of interest (CHF) and also means the end of follow-up.
(C-3) Group assessment.

(D) Application of competing risk regression to the subanalysis of PARTNER trial.

TAVR, transcatheter aortic valve replacement; SAVR, surgical aortic valve replacement.

Figure 4. Negative binomial regression analysis

(A) Flow chart for analysis. (A-1) Each group. (A-2) Patients’ level assessment. Number of
events is counted in each patient. (A-3) Group assessment. Negative binomial regression is a
statistical method for the analysis of over-dispersed date. The comparison between groups is
shown as rate ratio and p-value.

(B) Application of negative binomial regression to the PARADIGM-HF trial.

NYHA, New York Heart Association; EF, ejection fraction; CV, cerebrovascular; CHF,

congestive heart failure; RR, rate ratio.

Figure 5. Comparison of time-to-first-event, Andersen-Gill, and Wei-Lin-Weissfeld
(WLW) methods

(A) Flow chart for analysis. (A-1) Each group. (A-2) Patients’ level assessment. (A-3) Group
assessment. The time-to-first-event analysis uses only the first event and time to the first event.

In this example, 2 step downs according to the first events in “patient 1”” and “patient 2” are
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shown in the Kaplan-Meier curve. In Andersen-Gill analysis, all events and the times between
consecutive events (gap-time approach) are used. Five step downs according to 2 events in
“patient 1~ and 3 events in “patient 2 are demonstrated in this modified Kaplan-Meier curve.
In WLW method, the analyses for the 1st events in each patient (e.g. 2 events in “patient 1 and
2”), the 2nd events in each patient (e.g. 2 events in “patient 1 and 2”), the 3rd events in each
patient (e.g. 1 event in “patient 2”), and so on (e.g. the 4th event did not occur), are performed.
When we compare groups, results are presented as hazard ratios and p-values.

(B) Application of time-to-first-event, Andersen-Gill, and WLW methods to the REDUCE-IT
trial.

CV, cerebrovascular; MI, myocardial infarction; HR, hazard ratio.

Figure 6. Weighted composite endpoint (WCE)

(A) Flow chart for analysis. In this explanation, event weights of death, stroke, and myocardial
infarction (MI) are assigned as 1.0, 0.47, and 0.38, respectively. (A-1) Each group. (A-2)
Patients’ level assessment. The residual weights and event weights in each patient are
calculated as follows.

(a) No events occur at follow-up, a weight of 1.0 remains unaltered.

(b) A patient with a myocardial infarction on Day 1 and a non-disabling stroke on Day 11 has
a cumulative weighting of 0.3286 = 1 — [(1 — 0.38) x (1 — 0.47)]. When the patient suffers the
second stroke on Day 30, the patient has a residual weighting of 0.174158 = 0.3286 x (1 —
0.47).

(c) If a death is the only event, a weight of 1.0 is lost for a death event.

(d) If there is an event before a death, the residual weight is lost for a death.

(A-3) Group assessment.
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(a) Calculation of weighted number of patients at risk (residual weight) and cumulative
weighted event free rate.

(b) The table is an example when the number of patients is 20. A modified life table including
weighted number of patients at risk and cumulative weighted event free rate is created by each
patient data.

(B) Application of WCE method to the DELTA registry. This figure is reproduced with
permission from Ref s.

LMCA, left main coronary artery disease; PCI, percutaneous coronary intervention; CABG,
coronary artery bypass grafting; MACCE, major adverse cardiac or cerebrovascular events;

ClI, confidence interval.

Figure 7. The differences in dealing with composite endpoints

MI, myocardial infarction; WLW, Wei-Lin-Weissfeld.

Figure 8. Application of multiple statistical methods to cardiovascular disease trials
Weight 1: death, 1.0; CVA or stroke, 0.47; MI, 0.38; TVR, 0.25. Weight 2: death, 1.0; severe
stroke, 0.82; moderate stroke, 0.47; mild stroke, 0.23; severe MI, 0.59; moderate MI, 0.38;
mild MI, 0.17. Weight 3: death, 1.0; shock, 0.5; CHF, 0.3; Re-Ml, 0.2; RI, 0.1.

RCT, randomized control trial; LMCA, left main coronary artery disease; UA, unstable angina;
NSTEMI, non-ST-segment elevation myocardial infarction; 3VD, 3 vessel disease; STEMI,
ST-segment elevation myocardial infarction; PCI, percutaneous coronary intervention; CABG,
coronary artery bypass grafting; UFH, unfractionated heparin; CVA, cerebrovascular accident;
MI, myocardial infarction; TVR, target vessel revascularization; Re-Ml, recurrent myocardial
infarction; RI, recurrent ischemia; CV, cardiovascular; TTE, time to first event; WR, win ratio;
AG, Andersen-Gill; WCE, weighted composite endpoint; CR, competing risk; NB, negative
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binomial; GRACE, Global Registry of Acute Cardiac Events; HR, hazard ratio; RR, rate ratio;

ClI, confidence interval; NA; not available.

Figure 9. Application of multiple statistical methods to congestive heart failure trials

RCT, randomized control trial; NYHA, New York Heart Association; EF, ejection fraction;
CHF, congestive heart failure; ACE-I, Angiotensin-converting enzyme-inhibitor; CVA,
cerebrovascular accident; IR, investigator reported; TTE, time to first event; WR, win ratio;
NB, negative binomial; AG, Andersen-Gill; WLW, Wei-Lin-Weissfeld; HR, hazard ratio; RR,

rate ratio; Cl, confidence interval.

Figure 10. Characteristics of statistical models and statistical power compared to time-to
first event analysis

WLW, Wei-Lin-Weissfeld; WCE, weighted composite endpoint.
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Figure 8
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Figure 10
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Supplementary data

Figure legends

Supplementary figure 1. Poisson distribution

(A) The number of events in an interval of time may be represented by a Poisson distribution.
The basic shapes of a Poisson distribution (gray and yellow) change according to the
probability of events, unlike a Gaussian distribution, which is always symmetric. (B) When the
frequency of events is very small (e.g. blue or orange), the variance may be greater than the

mean. In this case, the data will approximately follow an over-dispersed Poisson distribution.

A B _
Over-dispersed
Poisson distribution Poisson distribution
70 70
~~ 60 “= 60
‘g 50 4 ‘g 50
] 2
"lg 40 'Q‘.“o 40
o o
q6 30 “6 30
[ S
J o
g 20 o
S £
> 10 = 10
Z =z
0 0 - .
0123 456 7 8 9101112 13 14 15 16 01234567 8 9101112131415 16
Number of events Number of events
70 70
~~ 60 o 60
S £
g 50 ‘2 50
(] (]
-‘E 40 -g 40
o o
0
q6 3 "6 30
S S
g 20 g 20
S £
5 10 S 10
=2 =z
0= - 0
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 01 2 3 456 7 8 9 10111213 14 15 16

Number of events Number of events



