Endothelial Progenitor Cell (EPC) capture to aid vascular repair following coronary stenting: a new frontier in stent technology?

Jaco H. Houtgraaf, MD; Hendricus J. Duckers*, MD, PhD, FESC
Thoraxcenter Erasmus MC, Rotterdam, The Netherlands

The authors have no conflict of interest to declare.

Introduction

Drug eluting stents (DES), that locally release antiproliferative, immunosuppressive or anti-inflammatory drugs to retard intimal hyperplasia and restenosis, have significantly improved the outcome of percutaneous coronary interventions. In-stent restenosis was reduced by approximately 70% by the introduction of DES, both in paclitaxel or sirolimus eluting stents1-3. However, the local toxicity of the drug on the vessel wall and endothelium have also been shown to concomitantly impair endothelial regeneration and induce local hypersensitivity reactions leading to long-term endothelial dysfunction4-10. As endothelial stent coverage was found to be the most powerful histological predictor of late stent thrombosis (LST), delayed re-endothelialisation remains a big concern5. Even though the incidence of LST is low, the sheer volume of coronary interventions nowadays leads to significant numbers with high morbidity and mortality. LST is associated with non-fatal MI and cardiac death in as many as 75% and 45% of the cases respectively11-13. An accelerated re-endothelialisation response of the bare stent struts and facilitated arterial repair therefore is desirable. This may not only prevent stent thrombosis by inhibition of platelet adhesion, but it also might impede smooth muscle cell proliferation and migration14. This eventually might result in reduced neo-intimal hyperplasia with preserved arterial integrity and endothelial vasomotor function.

Endothelial progenitor cells

The arterial repair response after stent implantation is a multi-step process that involves de-differentiation, migration and proliferation of neighbouring endothelial cells14. Equally important is the incorporation of systemically circulating endothelial progenitor cells (EPCs) originating from the bone marrow. These cells are estimated to contribute to re-endothelialisation of the neo-intima for up to 25%15,16. The beneficial role of these endothelial progenitor cells in neoangiogenesis and arterial repair was initially suggested in 1997 by Asahara et al17. EPCs are immature cells that are capable of migrating, proliferating and differentiating into endothelial cells under influence of angiotrophic growth factors, including vascular endothelial growth factor, cell-cell interactions and interactions with the extra cellular matrix. Several studies have suggested, that these EPCs play an essential role in postnatal vasculogenesis as well as in the vascular repair response15,18,19.

Ever since their discovery, there has been controversy about the actual flow cytometric phenotype of EPCs. Whereas the classical phenotype comprises CD45+/ CD34+/ VEGFR2+(KDR) cells, several alternate populations have been identified as potential endothelial cell (EC) progenitors20. Moreover, EPCs can be characterised by functional analysis in cell culture (migratory and colony forming potential, expression of EC specific proteins, uptake of acLDL), rather than by flow cytometry20,21. Recently, two functionally distinct
Several factors are associated with improved function and patients with type II diabetes mellitus, dyslipidaemia and beneficial and pleiotropic effects. The activation of the PI3-kinase/Akt-pathway underlies these restenosis, (progression of) atherosclerotic disease, cardiovascular explored to stimulate the endogenous ability to promote regrowth of alternatively, angiotrophic growth factors such as VEGF have been found to be decreased in patients with stable coronary artery disease (CAD) and in patients migratory capacities however were found to be increased in atherosclerotic patients. For instance, EPC function in vitro was shown to be a strong predictor of in-stent function was impaired with age or with smoking, as well as in patients with type II diabetes mellitus, dyslipidaemia and hypertension. Conversely, low EPC count or impaired EPC function in vitro was shown to be a strong predictor of in-stent restenosis, (progression of) atherosclerotic disease, cardiovascular events and death from cardiovascular causes. Several factors are associated with improved function and recruitment of EPCs from the bone-marrow including VEGF, estrogen, exercise and erythropoietin. Also, statin therapy is known to augment EPC mobilisation from bone marrow and improvement of EPC function in both mice and patients. It is believed that the increase of bioavailability of eNOS by statins and the activation of the PI3-kinase/Akt-pathway underlies these beneficial and pleiotropic effects.

Vascular healing and re-endothelialisation
To accelerate re-endothelialisation after coronary intervention several approaches have been explored to date. Direct seeding of mature endothelial cells on bare metal stents proved to be laborious, whereas the cultured endothelial monolayers covering the stent struts is severely damaged by balloon expansion of the stent. Blood flow along the stent surface after implantation washed away most of the remaining cells. Although this approach is feasible, it has not been pursued in a clinical setting. Alternatively, angiogenic growth factors such as VEGF have been explored to stimulate the endogenous ability to promote regrowth of the endothelial layer. The mode of delivery of VEGF, that has been described, varied from direct intracoronary infusion of plasmids encoding VEGF prior to PCI to recombinant VEGF protein-coated stents and stents coated with VEGF plasmids (gene eluting stent). Although these techniques proved to be safe in animals and small scale clinical trials, they failed to show a reduction in neo-intima formation.

The CD34 antibody-coated bioengineered coronary stent (Genous R stent)
The key role of EPCs in the arterial repair response after stent implantation prompted the concept that recruitment of the patient’s own EPCs to the site of vascular injury could aid stent re-endothelialisation and initiate the endogenous arterial repair response. A few years ago, this “pro-healing” concept led to the development of the first bioengineered stent by the Thoraxcenter Rotterdam in conjunction with OrbusNeich, The Netherlands (Genous R-stent). This stent was specifically designed to promote the arterial healing response by a coating of immobilised murine antibodies raised against human CD34. As a result, the Genous R-stent captures and sequesters circulating CD34-positive progenitor cells to the luminal stent surface and so theoretically initiates re-endothelialisation. Several pre-clinical studies were conducted to prove safety and feasibility. In pigs, anti-CD34-coated stents exhibited accelerated coverage with an endothelial cell population and, equally important, showed no sign of mural thrombus formation in contrast to bare metal stent control pigs, 48 hours post implantation. Complete coverage of the Genous-stent by a functional endothelial monolayer was achieved after seven to 14 days, whereas DES controls showed eminent delayed vascular healing. Re-establishment of a functional endothelial cell layer restored the cellular vascular integrity and homeostasis. The recovery of vascular function resulted in prevention of platelet aggregation and in-stent thrombus formation, inhibition of smooth muscle cell migration and proliferation, thereby prevention of neointimal hyperplasia, preserved vasomotor response, and angiogenesis.

The EPC capturing Genous stent in clinical practice
The encouraging pre-clinical studies in rabbits, pigs and primates led to the HEALING-FIM study in which safety and feasibility of the anti-CD34-coated stent was demonstrated in 16 patients with stable single vessel CAD. In this study the procedural success rate was 100%, whereas the composite major adverse cardiac and cerebrovascular event (MACCE) rate was 6.3% due to a target vessel revascularisation in one patient. Despite only one month of dual anti-platelet therapy, there was no acute stent thrombosis observed in the treated patient group. Mean late luminal loss after six months was 0.63±0.52 mm and stent volume obstruction was 27.2%±20.9%. Where HEALING-FIM demonstrated the safety of the anti-CD34-coated stent, the HEALING II registry was designed to provide additional safety data and initial efficacy data as well as use of QCA and IVUS follow-up. HEALING II was a prospective, non-randomised, multicentred study, enrolling 63 patients with single vessel CAD. The coronary intervention was successful in 98.4% of
Myocardial infarction was described by Co et al [59]. In this study, recently, the use of the EPC-capturing stent in the treatment of acute events had low EPC titers at six-month follow-up, whereas patients with significant restenosis or MACCE/revascularization correlation was found between the EPC titer and restenosis rates. All patients with significant restenosis or MACCE/vascular revascularization events had low EPC titers at six-month follow-up, whereas patients with normal EPC titers did not show TLR or MACCE.

Upcoming results and trials

Data analysis of the HEALING II study showed that the majority of patients treated with concomitant statin therapy had normal EPC titers, while patients that were not on statin therapy had low EPC counts [59]. The latter observation led to the design of the HEALING II registry, in which all patients receiving the anti-CD34-coated stent also were initiated with statin pharmacotherapy (Atorvastatin 80 mg qd) at least two weeks prior to stent placement. HEALING IIb is a multicentre, prospective, randomised trial with angiographic follow-up at six and eighteen months, in which the effectiveness of the anti-CD34-coated stent in combination with optimal statin therapy will be assessed. By the beginning of 2008, inclusion of all 100 patients will be due. Patients will be randomised to receive either a Genous R stent or a Xience V stent after at least two weeks of optimal statin therapy. At baseline and six months after stent implantation, IVUS will be performed as well as an acetylcholine provocation test. Vasomotor response after acetylcholine provocation of the stented vessel will render more insight into the difference in vascular healing and endothelial function after placement of the bio-engineered stent or DES.

Finally, the TRIAS-HR and TRIAS-LR studies are multicentre, prospective, randomised trials of approximately 1,200 patients that only recently have been initiated. In the TRIAS-HR study, non-inferiority of the Genous R-stent versus TAXUS Liberté paclitaxel eluting stents in new lesions with high-risk for restenosis will be investigated. The TRIAS-LR study was designed to show non-inferiority of the Genous R-stent versus bare metal stents in new lesions with a low risk of restenosis. Primary endpoints of both studies are target lesion failure within one year.

Conclusion

In conclusion, acceleration of the endogenous vascular repair response by EPC capturing is an interesting novel approach to impede in-stent restenosis formation in percutaneous interventions. Safety and proof of principle have been established in several (pre-)clinical studies, although the outcome of larger randomised clinical trials has to be awaited.

References


